{"id":"https://openalex.org/W4386839807","doi":"https://doi.org/10.48550/arxiv.2309.08532","title":"Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers","display_name":"Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4386839807","doi":"https://doi.org/10.48550/arxiv.2309.08532"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.08532","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2309.08532","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5063958657","display_name":"Qingyan Guo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Qingyan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022663899","display_name":"Rui Wang","orcid":"https://orcid.org/0000-0002-1688-9452"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Rui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055122985","display_name":"Junliang Guo","orcid":"https://orcid.org/0000-0001-8360-5483"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Junliang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5107028150","display_name":"Bei Li","orcid":"https://orcid.org/0000-0001-7617-9041"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Bei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028035527","display_name":"Kaitao Song","orcid":"https://orcid.org/0000-0002-4046-8594"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Song, Kaitao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101274342","display_name":"Xu Tan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tan, Xu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100731912","display_name":"Guoqing Liu","orcid":"https://orcid.org/0000-0003-4110-7616"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Guoqing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021438219","display_name":"Jiang Bian","orcid":"https://orcid.org/0000-0001-6997-1989"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bian, Jiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5020953714","display_name":"Yujiu Yang","orcid":"https://orcid.org/0000-0002-6427-1024"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Yujiu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":14,"citation_normalized_percentile":{"value":0.999953,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12031","display_name":"Speech and dialogue systems","score":0.9829,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.7325681}],"concepts":[{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.7325681},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.5769584},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.561444},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5389951},{"id":"https://openalex.org/C159149176","wikidata":"https://www.wikidata.org/wiki/Q14489129","display_name":"Evolutionary algorithm","level":2,"score":0.4459626},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4212256},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4201776},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38931954},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.09223077},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.08582127},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.07744083}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.08532","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2309.08532","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.08532","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4381280689","https://openalex.org/W3128025644","https://openalex.org/W3125827053","https://openalex.org/W2961085424","https://openalex.org/W2847365777","https://openalex.org/W2787993192","https://openalex.org/W2750422482","https://openalex.org/W2355048207","https://openalex.org/W2158269427","https://openalex.org/W2015462925"],"abstract_inverted_index":{"Large":[0],"Language":[1],"Models":[2],"(LLMs)":[3],"excel":[4],"in":[5,25],"various":[6],"tasks,":[7,155],"but":[8],"they":[9,48],"rely":[10],"on":[11,60,123,131,148,179,196],"carefully":[12],"crafted":[13],"prompts":[14,114,119,137,167],"that":[15,68,184],"often":[16],"demand":[17],"substantial":[18],"human":[19],"effort.":[20],"To":[21,55],"automate":[22],"this":[23,26],"process,":[24],"paper,":[27],"we":[28,75],"propose":[29],"a":[30,111],"novel":[31],"framework":[32],"for":[33,138,171],"discrete":[34,61],"prompt":[35,173],"optimization,":[36],"called":[37],"EvoPrompt,":[38],"which":[39,63,191],"borrows":[40],"the":[41,87,95,124,128,132,197],"idea":[42],"of":[43,92,99,113,199],"evolutionary":[44,125],"algorithms":[45],"(EAs)":[46],"as":[47,156,158],"exhibit":[49],"good":[50],"performance":[51,98],"and":[52,73,94,115,141,146,168,201],"fast":[53],"convergence.":[54],"enable":[56],"EAs":[57,188],"to":[58,70,84,177],"work":[59],"prompts,":[62],"are":[64],"natural":[65],"language":[66,89,152],"expressions":[67],"need":[69],"be":[71],"coherent":[72],"human-readable,":[74],"connect":[76],"LLMs":[77,93,121,143,186,200],"with":[78,120,187],"EAs.":[79,100],"This":[80],"approach":[81],"allows":[82],"us":[83],"simultaneously":[85],"leverage":[86],"powerful":[88],"processing":[90],"capabilities":[91],"efficient":[96],"optimization":[97],"Specifically,":[101],"abstaining":[102],"from":[103,110],"any":[104],"gradients":[105],"or":[106],"parameters,":[107],"EvoPrompt":[108,163,182],"starts":[109],"population":[112,129],"iteratively":[116],"generates":[117],"new":[118],"based":[122,130],"operators,":[126],"improving":[127],"development":[133],"set.":[134],"We":[135],"optimize":[136],"both":[139],"closed-":[140],"open-source":[142],"including":[144],"GPT-3.5":[145],"Alpaca,":[147],"31":[149],"datasets":[150],"covering":[151],"understanding,":[153],"generation":[154,174],"well":[157],"BIG-Bench":[159],"Hard":[160],"(BBH)":[161],"tasks.":[162],"significantly":[164],"outperforms":[165],"human-engineered":[166],"existing":[169],"methods":[170],"automatic":[172],"(e.g.,":[175],"up":[176],"25%":[178],"BBH).":[180],"Furthermore,":[181],"demonstrates":[183],"connecting":[185],"creates":[189],"synergies,":[190],"could":[192],"inspire":[193],"further":[194],"research":[195],"combination":[198],"conventional":[202],"algorithms.":[203]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386839807","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":10},{"year":2023,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2025-03-30T05:21:45.078415","created_date":"2023-09-19"}