{"id":"https://openalex.org/W4386809214","doi":"https://doi.org/10.48550/arxiv.2309.07412","title":"Advancing Regular Language Reasoning in Linear Recurrent Neural Networks","display_name":"Advancing Regular Language Reasoning in Linear Recurrent Neural Networks","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4386809214","doi":"https://doi.org/10.48550/arxiv.2309.07412"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.07412","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2309.07412","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5085851733","display_name":"Ting-Han Fan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fan, Ting-Han","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054133264","display_name":"Ta-Chung Chi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chi, Ta-Chung","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5040668817","display_name":"Alexander I. Rudnicky","orcid":"https://orcid.org/0000-0003-2044-8446"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rudnicky, Alexander I.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13629","display_name":"Text Readability and Simplification","score":0.9462,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/constant","display_name":"Constant (computer programming)","score":0.4168632}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7044678},{"id":"https://openalex.org/C132459708","wikidata":"https://www.wikidata.org/wiki/Q744069","display_name":"Extrapolation","level":2,"score":0.58917934},{"id":"https://openalex.org/C101468663","wikidata":"https://www.wikidata.org/wiki/Q1620158","display_name":"Modular design","level":2,"score":0.531402},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.52324003},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.51957726},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.5134774},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.4961918},{"id":"https://openalex.org/C195324797","wikidata":"https://www.wikidata.org/wiki/Q33742","display_name":"Natural language","level":2,"score":0.48826647},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4200545},{"id":"https://openalex.org/C2777027219","wikidata":"https://www.wikidata.org/wiki/Q1284190","display_name":"Constant (computer programming)","level":2,"score":0.4168632},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3663274},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.35471267},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17972249},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.14640805},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.07412","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2309.07412","pdf_url":"http://arxiv.org/pdf/2309.07412","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2309.07412","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.07412","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.81,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4288365749","https://openalex.org/W4288267738","https://openalex.org/W4287826556","https://openalex.org/W4287598411","https://openalex.org/W3198458223","https://openalex.org/W3098382480","https://openalex.org/W3094871513","https://openalex.org/W3049463507","https://openalex.org/W3013624417","https://openalex.org/W2936497627"],"abstract_inverted_index":{"In":[0],"recent":[1],"studies,":[2],"linear":[3],"recurrent":[4],"neural":[5],"networks":[6],"(LRNNs)":[7],"have":[8],"achieved":[9],"Transformer-level":[10],"performance":[11],"in":[12,32,43],"natural":[13],"language":[14,101],"modeling":[15,18],"and":[16,24,60,80,108],"long-range":[17],"while":[19],"offering":[20],"rapid":[21],"parallel":[22],"training":[23,44],"constant":[25],"inference":[26],"costs.":[27],"With":[28],"the":[29,40,48,69,87,91],"resurged":[30],"interest":[31],"LRNNs,":[33],"we":[34,71],"study":[35],"whether":[36],"they":[37],"can":[38,95],"learn":[39],"hidden":[41],"rules":[42],"sequences,":[45],"such":[46,103],"as":[47,104],"grammatical":[49],"structures":[50],"of":[51],"regular":[52,65,100],"language.":[53,66],"We":[54],"theoretically":[55],"analyze":[56],"some":[57],"existing":[58],"LRNNs":[59],"discover":[61],"their":[62],"limitations":[63],"on":[64,99],"Motivated":[67],"by":[68],"analysis,":[70],"propose":[72],"a":[73,78],"new":[74],"LRNN":[75,93],"equipped":[76],"with":[77],"block-diagonal":[79],"input-dependent":[81],"transition":[82],"matrix.":[83],"Experiments":[84],"suggest":[85],"that":[86,94],"proposed":[88],"model":[89],"is":[90],"only":[92],"perform":[96],"length":[97],"extrapolation":[98],"tasks":[102],"Sum,":[105],"Even":[106],"Pair,":[107],"Modular":[109],"Arithmetic.":[110]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386809214","counts_by_year":[],"updated_date":"2025-01-06T06:29:26.920871","created_date":"2023-09-18"}