{"id":"https://openalex.org/W4386719917","doi":"https://doi.org/10.48550/arxiv.2309.04755","title":"Towards Real-time Training of Physics-informed Neural Networks: Applications in Ultrafast Ultrasound Blood Flow Imaging","display_name":"Towards Real-time Training of Physics-informed Neural Networks: Applications in Ultrafast Ultrasound Blood Flow Imaging","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4386719917","doi":"https://doi.org/10.48550/arxiv.2309.04755"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.04755","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2309.04755","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101561045","display_name":"Haotian Guan","orcid":"https://orcid.org/0009-0006-4107-0576"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guan, Haotian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102074560","display_name":"Jinping Dong","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dong, Jinping","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5051013497","display_name":"Wei-Ning Lee","orcid":"https://orcid.org/0000-0001-8799-2492"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Wei-Ning","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.853324,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":85},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10727","display_name":"Ultrasound Imaging and Elastography","score":0.9723,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12537","display_name":"Flow Measurement and Analysis","score":0.9557,"subfield":{"id":"https://openalex.org/subfields/2211","display_name":"Mechanics of Materials"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/initialization","display_name":"Initialization","score":0.8063703},{"id":"https://openalex.org/keywords/transit-time-technique","display_name":"Transit-Time Technique","score":0.499479}],"concepts":[{"id":"https://openalex.org/C114466953","wikidata":"https://www.wikidata.org/wiki/Q6034165","display_name":"Initialization","level":2,"score":0.8063703},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.46796829},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45487392},{"id":"https://openalex.org/C73000952","wikidata":"https://www.wikidata.org/wiki/Q17007827","display_name":"Discretization","level":2,"score":0.41942987},{"id":"https://openalex.org/C38349280","wikidata":"https://www.wikidata.org/wiki/Q1434290","display_name":"Flow (mathematics)","level":2,"score":0.41856092},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.34955466},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.33729157},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3080453},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.2246516},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.21825954},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.04755","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2309.04755","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.04755","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3204184292","https://openalex.org/W3176564347","https://openalex.org/W3095877357","https://openalex.org/W3031039437","https://openalex.org/W2355833770","https://openalex.org/W2085754006","https://openalex.org/W2072565696","https://openalex.org/W1985458517","https://openalex.org/W183202219","https://openalex.org/W1774782920"],"abstract_inverted_index":{"Physics-informed":[0],"Neural":[1],"Network":[2],"(PINN)":[3],"is":[4,96],"one":[5],"of":[6,11,22,44,54,70,103,109,138,150,152,162,176,188,206,216],"the":[7,19,39,101,107,136,153,186,203,223,233],"most":[8],"preeminent":[9],"solvers":[10],"Navier-Stokes":[12,31,74,78,87],"equations,":[13,32],"which":[14],"are":[15,33,182,199],"widely":[16],"used":[17,183],"as":[18,98,116,147],"governing":[20],"equation":[21],"blood":[23,46,180,235,239],"flow.":[24],"However,":[25],"current":[26],"approaches,":[27],"relying":[28],"on":[29,222,232],"full":[30],"impractical":[34],"for":[35,42,72,124],"ultrafast":[36],"Doppler":[37],"ultrasound,":[38],"state-of-the-art":[40],"technique":[41],"depiction":[43],"complex":[45],"flow":[47,240],"dynamics":[48],"\\emph{in":[49,173],"vivo}":[50],"through":[51],"acquired":[52],"thousands":[53],"frames":[55],"(or,":[56],"timestamps)":[57],"per":[58],"second.":[59],"In":[60],"this":[61],"article,":[62],"we":[63,105,134],"first":[64],"propose":[65,119],"a":[66,120],"novel":[67,93],"training":[68,94,122,161],"framework":[69,95],"PINN":[71,163],"solving":[73,85],"equations":[75,79,88],"by":[76],"discretizing":[77],"into":[80],"steady":[81],"state":[82],"and":[83,118,172,178,190,197,219,226,229],"sequentially":[84],"steady-state":[86],"with":[89,168],"transfer":[90],"learning.":[91],"The":[92],"coined":[97],"SeqPINN.":[99,169],"Upon":[100],"success":[102],"SeqPINN,":[104],"adopt":[106],"idea":[108],"averaged":[110],"constant":[111],"stochastic":[112],"gradient":[113],"descent":[114],"(SGD)":[115],"initialization":[117,130],"parallel":[121],"scheme":[123],"all":[125],"timestamps.":[126],"To":[127],"ensure":[128],"an":[129,148],"that":[131,194],"generalizes":[132],"well,":[133],"borrow":[135],"concept":[137],"Stochastic":[139],"Weight":[140],"Averaging":[141],"Gaussian":[142],"to":[143,184],"perform":[144],"uncertainty":[145],"estimation":[146],"indicator":[149],"generalizability":[151],"initialization.":[154],"This":[155],"algorithm,":[156],"named":[157],"SP-PINN,":[158],"further":[159],"expedites":[160],"while":[164,208],"achieving":[165,210],"comparable":[166],"accuracy":[167],"Finite-element":[170],"simulations":[171],"vitro}":[174],"phantoms":[175],"single-branch":[177],"trifurcate":[179,234],"vessels":[181],"evaluate":[185],"performance":[187],"SeqPINN":[189,196],"SP-PINN.":[191],"Results":[192],"show":[193],"both":[195],"SP-PINN":[198],"manyfold":[200],"faster":[201],"than":[202],"original":[204],"design":[205],"PINN,":[207],"respectively":[209],"Root":[211],"Mean":[212],"Square":[213],"Errors":[214],"(RMSEs)":[215],"1.01":[217],"cm/s":[218,221,228,231],"1.26":[220],"straight":[224],"vessel":[225,236],"1.91":[227],"2.56":[230],"when":[237],"recovering":[238],"velocities.":[241]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386719917","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2024-12-05T08:14:12.006664","created_date":"2023-09-14"}