{"id":"https://openalex.org/W4386437475","doi":"https://doi.org/10.48550/arxiv.2309.00267","title":"RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback","display_name":"RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4386437475","doi":"https://doi.org/10.48550/arxiv.2309.00267"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.00267","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2309.00267","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5005749328","display_name":"Harrison Lee","orcid":"https://orcid.org/0000-0001-8879-894X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Harrison","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010505040","display_name":"Samrat Phatale","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Phatale, Samrat","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089795752","display_name":"Hassan Mansoor","orcid":"https://orcid.org/0000-0002-7198-0582"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mansoor, Hassan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085471116","display_name":"Kellie Lu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Kellie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082334070","display_name":"Thomas Mesnard","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mesnard, Thomas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114134761","display_name":"Colton Bishop","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bishop, Colton","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079740254","display_name":"Victor C\u0103rbune","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Carbune, Victor","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5087687501","display_name":"Abhinav Rastogi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rastogi, Abhinav","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":31,"citation_normalized_percentile":{"value":0.99995,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12031","display_name":"Speech and dialogue systems","score":0.9914,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9817,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.47755036}],"concepts":[{"id":"https://openalex.org/C170858558","wikidata":"https://www.wikidata.org/wiki/Q1394144","display_name":"Automatic summarization","level":2,"score":0.83751094},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76289016},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.6682714},{"id":"https://openalex.org/C2781249084","wikidata":"https://www.wikidata.org/wiki/Q908656","display_name":"Preference","level":2,"score":0.65819764},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.59859335},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58333105},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.504387},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47834513},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.47755036},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.06705952},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.00267","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2309.00267","pdf_url":"http://arxiv.org/pdf/2309.00267","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2309.00267","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.00267","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389760904","https://openalex.org/W4323520239","https://openalex.org/W4306886878","https://openalex.org/W4242223894","https://openalex.org/W3148229873","https://openalex.org/W2366403280","https://openalex.org/W2150160875","https://openalex.org/W2091301346","https://openalex.org/W1517524280","https://openalex.org/W1495108544"],"abstract_inverted_index":{"Reinforcement":[0],"learning":[1],"from":[2,32],"human":[3,16,21,57,82],"feedback":[4],"(RLHF)":[5],"has":[6],"proven":[7],"effective":[8],"in":[9,54],"aligning":[10],"large":[11],"language":[12],"models":[13],"(LLMs)":[14],"with":[15],"preferences.":[17,148],"However,":[18],"gathering":[19],"high-quality":[20],"preference":[22,99,128],"labels":[23,129],"can":[24,154],"be":[25],"a":[26,42,47,91,134,159],"time-consuming":[27],"and":[28,67],"expensive":[29],"endeavor.":[30],"RL":[31],"AI":[33,147],"Feedback":[34],"(RLAIF),":[35],"introduced":[36],"by":[37,81],"Bai":[38],"et":[39],"al.,":[40],"offers":[41],"promising":[43],"alternative":[44],"that":[45,152],"leverages":[46],"powerful":[48],"off-the-shelf":[49],"LLM":[50,98,114,127],"to":[51,77,89,121,162],"generate":[52],"preferences":[53],"lieu":[55],"of":[56,62,166],"annotators.":[58],"Across":[59],"the":[60,87,97,102,106,113,122,163],"tasks":[61],"summarization,":[63],"helpful":[64],"dialogue":[65,69],"generation,":[66,70],"harmless":[68],"RLAIF":[71,85,124,153],"achieves":[72,118],"comparable":[73],"or":[74],"superior":[75,119],"performance":[76,120],"RLHF,":[78],"as":[79,105],"rated":[80],"evaluators.":[83],"Furthermore,":[84],"demonstrates":[86],"ability":[88],"outperform":[90],"supervised":[92],"fine-tuned":[93],"baseline":[94],"even":[95],"when":[96],"labeler":[100],"is":[101],"same":[103],"size":[104],"policy.":[107],"In":[108],"another":[109],"experiment,":[110],"directly":[111],"prompting":[112],"for":[115,144],"reward":[116,135],"scores":[117],"canonical":[123],"setup,":[125],"where":[126],"are":[130],"first":[131],"distilled":[132],"into":[133],"model.":[136],"Finally,":[137],"we":[138],"conduct":[139],"extensive":[140],"studies":[141],"on":[142],"techniques":[143],"generating":[145],"aligned":[146],"Our":[149],"results":[150],"suggest":[151],"achieve":[155],"human-level":[156],"performance,":[157],"offering":[158],"potential":[160],"solution":[161],"scalability":[164],"limitations":[165],"RLHF.":[167]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386437475","counts_by_year":[{"year":2024,"cited_by_count":22},{"year":2023,"cited_by_count":7},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-04T15:28:20.528561","created_date":"2023-09-06"}