{"id":"https://openalex.org/W4386148323","doi":"https://doi.org/10.48550/arxiv.2308.11948","title":"Efficient Transfer Learning in Diffusion Models via Adversarial Noise","display_name":"Efficient Transfer Learning in Diffusion Models via Adversarial Noise","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4386148323","doi":"https://doi.org/10.48550/arxiv.2308.11948"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.11948","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2308.11948","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100674382","display_name":"Xiyu Wang","orcid":"https://orcid.org/0009-0009-2347-2098"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Xiyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059764469","display_name":"Baijiong Lin","orcid":"https://orcid.org/0000-0002-4257-0226"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lin, Baijiong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029813674","display_name":"Daochang Liu","orcid":"https://orcid.org/0000-0002-9279-7912"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Daochang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5001529504","display_name":"Chang Xu","orcid":"https://orcid.org/0000-0002-4756-0609"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Chang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9893,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9893,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9846,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9832,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.44381627},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.43331113}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.808053},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.59014314},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58119375},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5602216},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5430902},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.5341368},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.52978915},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.51885283},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.44381627},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.43331113},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.43310177},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.33611506},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33437395},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32958746},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.11948","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2308.11948","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.11948","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4310988119","https://openalex.org/W4297672492","https://openalex.org/W4288019534","https://openalex.org/W4285226279","https://openalex.org/W4246396837","https://openalex.org/W3191453585","https://openalex.org/W3126451824","https://openalex.org/W2502115930","https://openalex.org/W2482350142","https://openalex.org/W1561927205"],"abstract_inverted_index":{"Diffusion":[0],"Probabilistic":[1],"Models":[2],"(DPMs)":[3],"have":[4,28],"demonstrated":[5],"substantial":[6],"promise":[7],"in":[8,50,62,78,126,145],"image":[9,131,148],"generation":[10,132],"tasks":[11,133],"but":[12,142],"heavily":[13],"rely":[14],"on":[15,120],"the":[16,30,53,63,70,94,121,127],"availability":[17],"of":[18,21,129,147],"large":[19],"amounts":[20],"training":[22],"data.":[23,41],"Previous":[24],"works,":[25],"like":[26],"GANs,":[27],"tackled":[29],"limited":[31,95],"data":[32,96],"problem":[33],"by":[34],"transferring":[35],"pre-trained":[36],"models":[37],"learned":[38],"with":[39,75,107],"sufficient":[40],"However,":[42],"those":[43],"methods":[44],"are":[45],"hard":[46],"to":[47,92,154],"be":[48],"utilized":[49],"DPMs":[51],"since":[52],"distinct":[54],"differences":[55],"between":[56],"DPM-based":[57],"and":[58,69,110,150,157],"GAN-based":[59,156],"methods,":[60],"showing":[61],"unique":[64],"iterative":[65],"denoising":[66],"process":[67],"integral":[68],"need":[71],"for":[72],"many":[73],"timesteps":[74],"no-targeted":[76],"noise":[77,112,118],"DPMs.":[79],"In":[80],"this":[81],"paper,":[82],"we":[83],"propose":[84],"a":[85,108],"novel":[86],"DPMs-based":[87],"transfer":[88,106],"learning":[89],"method,":[90],"TAN,":[91],"address":[93],"problem.":[97],"It":[98],"includes":[99],"two":[100],"strategies:":[101],"similarity-guided":[102],"training,":[103],"which":[104,114],"boosts":[105],"classifier,":[109],"adversarial":[111],"selection":[113],"adaptive":[115],"chooses":[116],"targeted":[117],"based":[119],"input":[122],"image.":[123],"Extensive":[124],"experiments":[125],"context":[128],"few-shot":[130],"demonstrate":[134],"that":[135],"our":[136],"method":[137],"is":[138],"not":[139],"only":[140],"efficient":[141],"also":[143],"excels":[144],"terms":[146],"quality":[149],"diversity":[151],"when":[152],"compared":[153],"existing":[155],"DDPM-based":[158],"methods.":[159]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386148323","counts_by_year":[],"updated_date":"2025-01-06T19:35:40.694618","created_date":"2023-08-25"}