{"id":"https://openalex.org/W4385965781","doi":"https://doi.org/10.48550/arxiv.2308.08283","title":"CARE: A Large Scale CT Image Dataset and Clinical Applicable Benchmark Model for Rectal Cancer Segmentation","display_name":"CARE: A Large Scale CT Image Dataset and Clinical Applicable Benchmark Model for Rectal Cancer Segmentation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385965781","doi":"https://doi.org/10.48550/arxiv.2308.08283"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.08283","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2308.08283","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101666192","display_name":"Hantao Zhang","orcid":"https://orcid.org/0000-0002-5342-7951"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Hantao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038898235","display_name":"Weidong Guo","orcid":"https://orcid.org/0000-0003-0299-6393"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Weidong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085610681","display_name":"Chenyang Qiu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qiu, Chenyang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101091652","display_name":"Shouhong Wan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wan, Shouhong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077620702","display_name":"Bingbing Zou","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zou, Bingbing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108950931","display_name":"Wanqin Wang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Wanqin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5087025546","display_name":"Peiquan Jin","orcid":"https://orcid.org/0000-0002-3871-0548"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jin, Peiquan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.970896,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":78,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T14510","display_name":"Medical Imaging and Analysis","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6350726}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7472398},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7117877},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6350726},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5980442},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.4348925},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.42421097},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41965747},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.33911896},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.065749645},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.08283","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2308.08283","pdf_url":"http://arxiv.org/pdf/2308.08283","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2308.08283","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.08283","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/17","display_name":"Partnerships for the goals","score":0.44}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553","https://openalex.org/W1522196789"],"abstract_inverted_index":{"Rectal":[0],"cancer":[1,76,90,123],"segmentation":[2,20,36,125,201],"of":[3,46,56,66,145,191,209],"CT":[4,71,91],"image":[5,72,92],"plays":[6],"a":[7,60,67,85,107,120,167],"crucial":[8],"role":[9],"in":[10,25,33,52,163],"timely":[11],"clinical":[12,114,244],"diagnosis,":[13],"radiotherapy":[14],"treatment,":[15],"and":[16,49,101,113,175,179,243],"follow-up.":[17],"Although":[18],"current":[19],"methods":[21,202,228],"have":[22],"shown":[23],"promise":[24],"delineating":[26],"cancerous":[27,102],"tissues,":[28],"they":[29],"still":[30],"encounter":[31],"challenges":[32,138],"achieving":[34],"high":[35],"precision.":[37],"These":[38,233],"obstacles":[39],"arise":[40],"from":[41],"the":[42,47,50,64,137,141,184,189,204,210,216,223,238],"intricate":[43,142],"anatomical":[44,143],"structures":[45,144],"rectum":[48],"difficulties":[51],"performing":[53],"differential":[54],"diagnosis":[55],"rectal":[57,75,89],"cancer.":[58],"Additionally,":[59],"major":[61],"obstacle":[62],"is":[63,132,212],"lack":[65],"large-scale,":[68],"finely":[69],"annotated":[70],"dataset":[73,93],"for":[74,98,110,170,240],"segmentation.":[77],"To":[78,187],"address":[79],"these":[80,230],"issues,":[81],"this":[82],"work":[83],"introduces":[84],"novel":[86,121],"large":[87],"scale":[88],"CARE":[94,205],"with":[95,198],"pixel-level":[96],"annotations":[97],"both":[99],"normal":[100],"rectum,":[103],"which":[104],"serves":[105],"as":[106,237],"valuable":[108],"resource":[109],"algorithm":[111],"research":[112,242],"application":[115,245],"development.":[116,246],"Moreover,":[117],"we":[118,193],"propose":[119],"medical":[122],"lesion":[124,173],"benchmark":[126],"model":[127,131,211],"named":[128],"U-SAM.":[129],"The":[130,207],"specifically":[133],"designed":[134],"to":[135,161,177],"tackle":[136],"posed":[139],"by":[140,148],"abdominal":[146],"organs":[147],"incorporating":[149],"prompt":[150],"information.":[151],"U-SAM":[152,225],"contains":[153],"three":[154],"key":[155],"components:":[156],"promptable":[157],"information":[158,182],"(e.g.,":[159],"points)":[160],"aid":[162],"target":[164],"area":[165],"localization,":[166],"convolution":[168],"module":[169],"capturing":[171],"low-level":[172],"details,":[174],"skip-connections":[176],"preserve":[178],"recover":[180],"spatial":[181],"during":[183],"encoding-decoding":[185],"process.":[186],"evaluate":[188],"effectiveness":[190],"U-SAM,":[192],"systematically":[194],"compare":[195],"its":[196],"performance":[197],"several":[199],"popular":[200],"on":[203,215,229],"dataset.":[206,218],"generalization":[208],"further":[213],"verified":[214],"WORD":[217],"Extensive":[219],"experiments":[220,234],"demonstrate":[221],"that":[222],"proposed":[224],"outperforms":[226],"state-of-the-art":[227],"two":[231],"datasets.":[232],"can":[235],"serve":[236],"baseline":[239],"future":[241]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385965781","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-20T06:19:19.825732","created_date":"2023-08-18"}