{"id":"https://openalex.org/W4385890126","doi":"https://doi.org/10.48550/arxiv.2308.07663","title":"Coherent set identification via direct low rank maximum likelihood estimation","display_name":"Coherent set identification via direct low rank maximum likelihood estimation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385890126","doi":"https://doi.org/10.48550/arxiv.2308.07663"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.07663","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2308.07663","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5043236416","display_name":"Robert Polzin","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Polzin, Robert","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014068268","display_name":"Ilja Klebanov","orcid":"https://orcid.org/0000-0002-1911-4281"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Klebanov, Ilja","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085251948","display_name":"Nikolas N\u00fcsken","orcid":"https://orcid.org/0000-0001-5415-5284"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"N\u00fcsken, Nikolas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5021278553","display_name":"P\u00e9ter Koltai","orcid":"https://orcid.org/0000-0002-8127-6804"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Koltai, P\u00e9ter","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9814,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.58966607},{"id":"https://openalex.org/keywords/matrix-norm","display_name":"Matrix norm","score":0.49533382},{"id":"https://openalex.org/keywords/low-rank-approximation","display_name":"Low-rank approximation","score":0.45568797}],"concepts":[{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.58966607},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.5056255},{"id":"https://openalex.org/C92207270","wikidata":"https://www.wikidata.org/wiki/Q939253","display_name":"Matrix norm","level":3,"score":0.49533382},{"id":"https://openalex.org/C2781181686","wikidata":"https://www.wikidata.org/wiki/Q4226068","display_name":"Coherence (philosophical gambling strategy)","level":2,"score":0.49489468},{"id":"https://openalex.org/C57493831","wikidata":"https://www.wikidata.org/wiki/Q3134666","display_name":"Projection (relational algebra)","level":2,"score":0.474698},{"id":"https://openalex.org/C187834632","wikidata":"https://www.wikidata.org/wiki/Q188804","display_name":"Factorization","level":2,"score":0.45733932},{"id":"https://openalex.org/C90199385","wikidata":"https://www.wikidata.org/wiki/Q6692777","display_name":"Low-rank approximation","level":3,"score":0.45568797},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.42712927},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.37067378},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3704847},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.32072282},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.17159873},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.14777759},{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.117518485},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.08558038},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.07663","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2308.07663","pdf_url":"http://arxiv.org/pdf/2308.07663","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2308.07663","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.07663","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.43,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4306936641","https://openalex.org/W4283122425","https://openalex.org/W4221157149","https://openalex.org/W4220722047","https://openalex.org/W3135513863","https://openalex.org/W2969889343","https://openalex.org/W2057590040","https://openalex.org/W1991825408","https://openalex.org/W1621084367","https://openalex.org/W1507830821"],"abstract_inverted_index":{"We":[0,80],"analyze":[1],"connections":[2],"between":[3,129,162],"two":[4,141],"low":[5,57,73,87],"rank":[6,58,74,88],"modeling":[7],"approaches":[8,116],"from":[9,49,77],"the":[10,21,37,72,95,112,140,150,154],"last":[11],"decade":[12],"for":[13,61],"treating":[14],"dynamical":[15],"data.":[16,79],"The":[17,52],"first":[18],"one":[19,54],"is":[20,55,91],"coherence":[22,110],"problem":[23],"(or":[24],"coherent":[25],"set":[26],"approach),":[27],"where":[28],"groups":[29],"of":[30,39,94,109,145,167],"states":[31],"are":[32],"sought":[33],"that":[34,82,90],"evolve":[35],"under":[36],"action":[38],"a":[40,45,56,86,92,106,127,134],"stochastic":[41,62],"transition":[42],"matrix":[43,147],"in":[44,85],"way":[46],"maximally":[47],"distinguishable":[48],"other":[50],"groups.":[51],"second":[53],"factorization":[59],"approach":[60],"matrices,":[63],"called":[64],"Direct":[65],"Bayesian":[66],"Model":[67],"Reduction":[68],"(DBMR),":[69],"which":[70],"estimates":[71],"factors":[75],"directly":[76],"observed":[78],"show":[81],"DBMR":[83],"results":[84],"model":[89],"projection":[93],"full":[96],"model,":[97],"and":[98,123,153,158,164],"exploit":[99],"this":[100,137],"insight":[101],"to":[102],"infer":[103],"bounds":[104],"on":[105],"quantitative":[107],"measure":[108],"within":[111],"reduced":[113],"model.":[114],"Both":[115],"can":[117],"be":[118],"formulated":[119],"as":[120],"optimization":[121],"problems,":[122],"we":[124],"also":[125],"prove":[126],"bound":[128],"their":[130],"respective":[131],"objectives.":[132],"On":[133],"broader":[135],"scope,":[136],"work":[138],"relates":[139],"classical":[142],"loss":[143],"functions":[144],"nonnegative":[146],"factorization,":[148],"namely":[149],"Frobenius":[151],"norm":[152],"generalized":[155],"Kullback--Leibler":[156],"divergence,":[157],"suggests":[159],"new":[160],"links":[161],"likelihood-based":[163],"projection-based":[165],"estimation":[166],"probabilistic":[168],"models.":[169]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385890126","counts_by_year":[],"updated_date":"2025-01-06T06:28:00.486364","created_date":"2023-08-17"}