{"id":"https://openalex.org/W4385849319","doi":"https://doi.org/10.48550/arxiv.2308.07200","title":"Neural Categorical Priors for Physics-Based Character Control","display_name":"Neural Categorical Priors for Physics-Based Character Control","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385849319","doi":"https://doi.org/10.48550/arxiv.2308.07200"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.07200","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2308.07200","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102561539","display_name":"Qingxu Zhu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Qingxu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100420133","display_name":"He Zhang","orcid":"https://orcid.org/0000-0002-7036-6820"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, He","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011329890","display_name":"Mengting Lan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lan, Mengting","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101913177","display_name":"Lei Han","orcid":"https://orcid.org/0000-0001-8686-8940"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Han, Lei","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12290","display_name":"Human Motion and Animation","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9749,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.5092894},{"id":"https://openalex.org/keywords/categorical-variable","display_name":"Categorical variable","score":0.41456228}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64266396},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62029195},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.5641245},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.5092894},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.48681352},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.47581798},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42950344},{"id":"https://openalex.org/C5274069","wikidata":"https://www.wikidata.org/wiki/Q2285707","display_name":"Categorical variable","level":2,"score":0.41456228},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.30595568},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.28041315}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.07200","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2308.07200","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.07200","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.5,"display_name":"Responsible consumption and production","id":"https://metadata.un.org/sdg/12"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4297051394","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2909431601","https://openalex.org/W2803255133","https://openalex.org/W2752972570","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2145836866"],"abstract_inverted_index":{"Recent":[0],"advances":[1],"in":[2,11,24,67,103,124,148,157,235],"learning":[3,22,47,195],"reusable":[4],"motion":[5,34,58,83,145],"priors":[6],"have":[7],"demonstrated":[8,184],"their":[9],"effectiveness":[10],"generating":[12],"naturalistic":[13],"behaviors.":[14],"In":[15],"this":[16,25,128],"paper,":[17],"we":[18,164],"propose":[19,166],"a":[20,86,93,107,167],"new":[21],"framework":[23,223],"paradigm":[26],"for":[27,196],"controlling":[28,227],"physics-based":[29],"characters":[30,205],"with":[31,134],"significantly":[32,191],"improved":[33],"quality":[35],"and":[36,52,151,190,213,241,245],"diversity":[37,189],"over":[38,96],"existing":[39],"state-of-the-art":[40],"methods.":[41],"The":[42,180],"proposed":[43,222],"method":[44],"uses":[45],"reinforcement":[46],"(RL)":[48],"to":[49,119,154,172,185,230],"initially":[50],"track":[51],"imitate":[53],"life-like":[54,113],"movements":[55,234],"from":[56,81,106],"unstructured":[57],"clips":[59,84],"using":[60,177,203],"the":[61,68,77,82,104,120,135,138,143,149,162,174,221,228],"discrete":[62,94],"information":[63,80],"bottleneck,":[64],"as":[65],"adopted":[66],"Vector":[69],"Quantized":[70],"Variational":[71],"AutoEncoder":[72],"(VQ-VAE).":[73],"This":[74],"structure":[75],"compresses":[76],"most":[78],"relevant":[79],"into":[85],"compact":[87],"yet":[88],"informative":[89],"latent":[90],"space,":[91],"i.e.,":[92],"space":[95,105],"vector":[97],"quantized":[98],"codes.":[99],"By":[100],"sampling":[101],"codes":[102],"trained":[108,133],"categorical":[109],"prior":[110,129,170,175],"distribution,":[111],"high-quality":[112,233],"behaviors":[114,156],"can":[115,131],"be":[116,132],"generated,":[117],"similar":[118],"usage":[121],"of":[122,137,226,237],"VQ-VAE":[123],"computer":[125],"vision.":[126],"Although":[127],"distribution":[130,147,176,182],"supervision":[136],"encoder's":[139],"output,":[140],"it":[141],"follows":[142],"original":[144],"clip":[146],"dataset":[150],"could":[152],"lead":[153],"imbalanced":[155],"our":[158],"setting.":[159],"To":[160],"address":[161],"issue,":[163],"further":[165],"technique":[168],"named":[169],"shifting":[171],"adjust":[173],"curiosity-driven":[178],"RL.":[179],"outcome":[181],"is":[183,224],"offer":[186],"sufficient":[187],"behavioral":[188,238],"facilitates":[192],"upper-level":[193],"policy":[194],"downstream":[197,209],"tasks.":[198],"We":[199],"conduct":[200],"comprehensive":[201],"experiments":[202],"humanoid":[204],"on":[206],"two":[207],"challenging":[208],"tasks,":[210],"sword-shield":[211],"striking":[212],"two-player":[214],"boxing":[215],"game.":[216],"Our":[217],"results":[218],"demonstrate":[219],"that":[220],"capable":[225],"character":[229],"perform":[231],"considerably":[232],"terms":[236],"strategies,":[239],"diversity,":[240],"realism.":[242],"Videos,":[243],"codes,":[244],"data":[246],"are":[247],"available":[248],"at":[249],"https://tencent-roboticsx.github.io/NCP/.":[250]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385849319","counts_by_year":[],"updated_date":"2025-04-14T13:37:17.124173","created_date":"2023-08-16"}