{"id":"https://openalex.org/W4385967987","doi":"https://doi.org/10.48550/arxiv.2308.01057","title":"MammoDG: Generalisable Deep Learning Breaks the Limits of Cross-Domain Multi-Center Breast Cancer Screening","display_name":"MammoDG: Generalisable Deep Learning Breaks the Limits of Cross-Domain Multi-Center Breast Cancer Screening","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385967987","doi":"https://doi.org/10.48550/arxiv.2308.01057"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.01057","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2308.01057","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100933553","display_name":"Yijun Yang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Yijun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100602079","display_name":"Shujun Wang","orcid":"https://orcid.org/0000-0003-1495-3278"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Shujun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085801450","display_name":"Lihao Liu","orcid":"https://orcid.org/0000-0002-7091-7119"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Lihao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010630166","display_name":"Sarah Hickman","orcid":"https://orcid.org/0000-0002-4637-7300"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hickman, Sarah","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061280047","display_name":"Fiona J. Gilbert","orcid":"https://orcid.org/0000-0002-0124-9962"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gilbert, Fiona J","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033880300","display_name":"Carola\u2010Bibiane Sch\u00f6nlieb","orcid":"https://orcid.org/0000-0003-0099-6306"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sch\u00f6nlieb, Carola-Bibiane","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5013015879","display_name":"Angelica I. Avil\u00e9s-Rivero","orcid":"https://orcid.org/0000-0002-8878-0325"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Aviles-Rivero, Angelica I.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.712479,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10556","display_name":"Global Cancer Incidence and Screening","score":0.9868,"subfield":{"id":"https://openalex.org/subfields/2730","display_name":"Oncology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9827,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.6638167},{"id":"https://openalex.org/keywords/trustworthiness","display_name":"Trustworthiness","score":0.51357913},{"id":"https://openalex.org/keywords/breast-cancer-screening","display_name":"Breast Cancer Screening","score":0.47831538}],"concepts":[{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.6638167},{"id":"https://openalex.org/C2780472235","wikidata":"https://www.wikidata.org/wiki/Q324634","display_name":"Mammography","level":4,"score":0.6610247},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6252904},{"id":"https://openalex.org/C2778476105","wikidata":"https://www.wikidata.org/wiki/Q628539","display_name":"Workload","level":2,"score":0.5967632},{"id":"https://openalex.org/C530470458","wikidata":"https://www.wikidata.org/wiki/Q128581","display_name":"Breast cancer","level":3,"score":0.5770301},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53416497},{"id":"https://openalex.org/C153701036","wikidata":"https://www.wikidata.org/wiki/Q659974","display_name":"Trustworthiness","level":2,"score":0.51357913},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.50301903},{"id":"https://openalex.org/C2778491387","wikidata":"https://www.wikidata.org/wiki/Q17011492","display_name":"Breast cancer screening","level":5,"score":0.47831538},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45546776},{"id":"https://openalex.org/C19527891","wikidata":"https://www.wikidata.org/wiki/Q1120908","display_name":"Medical physics","level":1,"score":0.44057786},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.41000956},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.32371467},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.24274006},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.076612204},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.01057","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2308.01057","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.01057","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.53,"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4307366929","https://openalex.org/W3215153804","https://openalex.org/W2897267175","https://openalex.org/W2611078562","https://openalex.org/W2417773830","https://openalex.org/W2416467559","https://openalex.org/W2120277115","https://openalex.org/W2033683555","https://openalex.org/W1994267236","https://openalex.org/W1703568518"],"abstract_inverted_index":{"Breast":[0],"cancer":[1,7],"is":[2,46],"a":[3,101,120],"major":[4],"cause":[5],"of":[6,14,23,44,110,137],"death":[8],"among":[9],"women,":[10],"emphasising":[11],"the":[12,26,35,89,134],"importance":[13,136],"early":[15],"detection":[16],"for":[17,91,105,140],"improved":[18],"treatment":[19],"outcomes":[20],"and":[21,38,94,107,119],"quality":[22],"life.":[24],"Mammography,":[25],"primary":[27],"diagnostic":[28,54],"imaging":[29,145],"test,":[30],"poses":[31],"challenges":[32],"due":[33],"to":[34,52,65,77,124],"high":[36,92],"variability":[37],"patterns":[39],"in":[40,48,144],"mammograms.":[41],"Double":[42],"reading":[43],"mammograms":[45,118],"recommended":[47],"many":[49],"screening":[50],"programs":[51],"improve":[53],"accuracy":[55],"but":[56,79],"increases":[57],"radiologists'":[58],"workload.":[59],"Researchers":[60],"explore":[61],"Machine":[62],"Learning":[63],"models":[64,70],"support":[66],"expert":[67],"decision-making.":[68],"Stand-alone":[69],"have":[71],"shown":[72],"comparable":[73],"or":[74],"superior":[75],"performance":[76],"radiologists,":[78],"some":[80],"studies":[81],"note":[82],"decreased":[83],"sensitivity":[84],"with":[85],"multiple":[86],"datasets,":[87],"indicating":[88],"need":[90],"generalisation":[93,126,139],"robustness":[95],"models.":[96],"This":[97],"work":[98],"devises":[99],"MammoDG,":[100],"novel":[102,121],"deep-learning":[103],"framework":[104],"generalisable":[106],"reliable":[108],"analysis":[109,143],"cross-domain":[111],"multi-center":[112],"mammography":[113,142],"data.":[114],"MammoDG":[115],"leverages":[116],"multi-view":[117],"contrastive":[122],"mechanism":[123],"enhance":[125],"capabilities.":[127],"Extensive":[128],"validation":[129],"demonstrates":[130],"MammoDG's":[131],"superiority,":[132],"highlighting":[133],"critical":[135],"domain":[138],"trustworthy":[141],"protocol":[146],"variations.":[147]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385967987","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-04-03T09:26:33.195772","created_date":"2023-08-19"}