{"id":"https://openalex.org/W4385439492","doi":"https://doi.org/10.48550/arxiv.2307.15484","title":"Minimally-Supervised Speech Synthesis with Conditional Diffusion Model and Language Model: A Comparative Study of Semantic Coding","display_name":"Minimally-Supervised Speech Synthesis with Conditional Diffusion Model and Language Model: A Comparative Study of Semantic Coding","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385439492","doi":"https://doi.org/10.48550/arxiv.2307.15484"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.15484","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.15484","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5028353824","display_name":"Chunyu Qiang","orcid":"https://orcid.org/0009-0007-2290-3074"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qiang, Chunyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100348721","display_name":"Hao Li","orcid":"https://orcid.org/0009-0005-4319-9026"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Hao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029516423","display_name":"Hao Ni","orcid":"https://orcid.org/0000-0001-5485-4376"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ni, Hao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101319176","display_name":"He Qu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qu, He","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073918837","display_name":"Ruibo Fu","orcid":"https://orcid.org/0000-0001-9598-1881"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fu, Ruibo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100453458","display_name":"Tao Wang","orcid":"https://orcid.org/0000-0002-0437-0557"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Tao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101745213","display_name":"Longbiao Wang","orcid":"https://orcid.org/0000-0002-8094-6861"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Longbiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5017251198","display_name":"Jianwu Dang","orcid":"https://orcid.org/0000-0002-9237-4821"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dang, Jianwu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.986,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9726,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.5181593}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7778915},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.6040224},{"id":"https://openalex.org/C159877910","wikidata":"https://www.wikidata.org/wiki/Q2202883","display_name":"Autoregressive model","level":2,"score":0.6007187},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.5905145},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.5181593},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.462222},{"id":"https://openalex.org/C174348530","wikidata":"https://www.wikidata.org/wiki/Q188635","display_name":"Bridging (networking)","level":2,"score":0.41746885},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.19130203},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11592159},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.15484","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.15484","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.15484","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.45,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4297051394","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2909431601","https://openalex.org/W2803255133","https://openalex.org/W2752972570","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2145836866"],"abstract_inverted_index":{"Recently,":[0],"there":[1],"has":[2],"been":[3],"a":[4,95,111,122,128,132,144,155,168,203],"growing":[5],"interest":[6],"in":[7,61],"text-to-speech":[8],"(TTS)":[9],"methods":[10,36,83,197],"that":[11,153,177,194],"can":[12],"be":[13],"trained":[14],"with":[15,205],"minimal":[16],"supervision":[17],"by":[18,56],"combining":[19],"two":[20,28],"types":[21],"of":[22,47,72,94,148,172,181],"discrete":[23,48],"speech":[24,49],"representations":[25],"and":[26,44,64,68,98,131,186],"using":[27],"sequence-to-sequence":[29],"tasks":[30],"to":[31,114,135,159],"decouple":[32],"TTS.":[33],"However,":[34],"existing":[35,73,182],"suffer":[37],"from":[38],"three":[39,81,173],"problems:":[40],"the":[41,51,57,65,103,107,179,188],"high":[42],"dimensionality":[43],"waveform":[45],"distortion":[46],"representations,":[50],"prosodic":[52,162],"averaging":[53],"problem":[54],"caused":[55],"duration":[58,156],"prediction":[59],"model":[60,97,113,158],"non-autoregressive":[62,145,169],"frameworks,":[63],"information":[66],"redundancy":[67],"dimension":[69],"explosion":[70],"problems":[71],"semantic":[74,104,183],"encoding":[75,184],"methods.":[76,200],"To":[77],"address":[78],"these":[79],"problems,":[80],"progressive":[82],"are":[84],"proposed.":[85],"First,":[86],"we":[87,141,165],"propose":[88,142,166],"Diff-LM-Speech,":[89],"an":[90],"autoregressive":[91],"structure":[92,125,146,170],"consisting":[93,147,171],"language":[96],"diffusion":[99,112,150,157,174],"models,":[100],"which":[101],"models":[102,185],"embedding":[105],"into":[106],"mel-spectrogram":[108],"based":[109,126],"on":[110,127],"achieve":[115,160,187],"higher":[116],"audio":[117,206],"quality.":[118],"We":[119,201],"also":[120],"introduce":[121],"prompt":[123,137],"encoder":[124],"variational":[129],"autoencoder":[130],"prosody":[133],"bottleneck":[134],"improve":[136],"representation":[138],"ability.":[139],"Second,":[140],"Tetra-Diff-Speech,":[143],"four":[149],"model-based":[151,175],"modules":[152,176],"design":[154],"diverse":[161],"expressions.":[163],"Finally,":[164],"Tri-Diff-Speech,":[167],"verify":[178],"non-necessity":[180],"best":[189],"results.":[190],"Experimental":[191],"results":[192],"show":[193],"our":[195],"proposed":[196],"outperform":[198],"baseline":[199],"provide":[202],"website":[204],"samples.":[207]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385439492","counts_by_year":[],"updated_date":"2025-04-14T07:19:36.999627","created_date":"2023-08-01"}