{"id":"https://openalex.org/W4385327844","doi":"https://doi.org/10.48550/arxiv.2307.13991","title":"METAVerse: Meta-Learning Traversability Cost Map for Off-Road Navigation","display_name":"METAVerse: Meta-Learning Traversability Cost Map for Off-Road Navigation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385327844","doi":"https://doi.org/10.48550/arxiv.2307.13991"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.13991","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.13991","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057384597","display_name":"Junwon Seo","orcid":"https://orcid.org/0000-0001-6046-9319"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Seo, Junwon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100657826","display_name":"Taekyung Kim","orcid":"https://orcid.org/0000-0001-7401-098X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Taekyung","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102152664","display_name":"Seongyong Ahn","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ahn, Seongyong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5102820574","display_name":"Kiho Kwak","orcid":"https://orcid.org/0000-0002-5737-0833"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kwak, Kiho","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.999916,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":84,"max":88},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13176","display_name":"Winter Sports Injuries and Performance","score":0.9624,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T13176","display_name":"Winter Sports Injuries and Performance","score":0.9624,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9371,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9296,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C161840515","wikidata":"https://www.wikidata.org/wiki/Q186131","display_name":"Terrain","level":2,"score":0.87316877},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7794927},{"id":"https://openalex.org/C105339364","wikidata":"https://www.wikidata.org/wiki/Q2297740","display_name":"Software deployment","level":2,"score":0.64816},{"id":"https://openalex.org/C2781002164","wikidata":"https://www.wikidata.org/wiki/Q6822311","display_name":"Meta learning (computer science)","level":3,"score":0.6149966},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.593932},{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.5634375},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.51265377},{"id":"https://openalex.org/C51399673","wikidata":"https://www.wikidata.org/wiki/Q504027","display_name":"Lidar","level":2,"score":0.4299391},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.18514863},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.12423146},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.089443624},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.13991","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.13991","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.13991","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.45,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4319837668","https://openalex.org/W4319317934","https://openalex.org/W4308071650","https://openalex.org/W4293094720","https://openalex.org/W4281783339","https://openalex.org/W3188333020","https://openalex.org/W2956374172","https://openalex.org/W2901265155","https://openalex.org/W2739701376","https://openalex.org/W2097297620"],"abstract_inverted_index":{"Autonomous":[0],"navigation":[1,188],"in":[2,15,48,99,184,189],"off-road":[3],"conditions":[4],"requires":[5],"an":[6],"accurate":[7],"estimation":[8,14,120],"of":[9,27,51],"terrain":[10,70],"traversability.":[11],"However,":[12],"traversability":[13,47,71,78],"unstructured":[16,190],"environments":[17],"is":[18,36,104,126],"subject":[19],"to":[20,24,38,81,106,128,133],"high":[21],"uncertainty":[22,182],"due":[23],"the":[25,77,131,134,180],"variability":[26],"numerous":[28],"factors":[29],"that":[30,43,65,156,164,179],"influence":[31],"vehicle-terrain":[32,96],"interaction.":[33],"Consequently,":[34],"it":[35],"challenging":[37],"obtain":[39,160],"a":[40,49,57,62,83,90,100,108,144,161,173],"generalizable":[41],"model":[42,64,110,163,171,174],"can":[44,159],"accurately":[45,66],"predict":[46],"variety":[50],"environments.":[52,74],"This":[53],"paper":[54],"presents":[55],"METAVerse,":[56],"meta-learning":[58],"framework":[59],"for":[60],"learning":[61],"global":[63,109,162],"and":[67,85,154,186,191],"reliably":[68],"predicts":[69],"across":[72],"diverse":[73],"We":[75],"train":[76,107],"prediction":[79],"network":[80,132],"generate":[82],"dense":[84],"continuous-valued":[86],"cost":[87],"map":[88],"from":[89,115,151],"sparse":[91],"LiDAR":[92],"point":[93],"cloud,":[94],"leveraging":[95],"interaction":[97,140],"feedback":[98],"self-supervised":[101],"manner.":[102],"Meta-learning":[103],"utilized":[105],"with":[111,172],"driving":[112,149],"data":[113,150],"collected":[114],"multiple":[116],"environments,":[117],"effectively":[118],"minimizing":[119],"uncertainty.":[121,166],"During":[122],"deployment,":[123],"online":[124],"adaptation":[125],"performed":[127],"rapidly":[129],"adapt":[130],"local":[135],"environment":[136],"by":[137,168],"exploiting":[138],"recent":[139],"experiences.":[141],"To":[142],"conduct":[143],"comprehensive":[145],"evaluation,":[146],"we":[147,177],"collect":[148],"various":[152],"terrains":[153],"demonstrate":[155,178],"our":[157,170],"method":[158],"minimizes":[165],"Moreover,":[167],"integrating":[169],"predictive":[175],"controller,":[176],"reduced":[181],"results":[183],"safe":[185],"stable":[187],"unknown":[192],"terrains.":[193]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385327844","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-06T19:57:53.213207","created_date":"2023-07-28"}