{"id":"https://openalex.org/W4385292767","doi":"https://doi.org/10.48550/arxiv.2307.13538","title":"INFINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equations","display_name":"INFINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equations","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385292767","doi":"https://doi.org/10.48550/arxiv.2307.13538"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.13538","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.13538","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5112967918","display_name":"Louis Serrano","orcid":null},"institutions":[],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Louis Serrano","raw_affiliation_strings":["MLIA - Machine Learning and Information Access (Tour 65-66 3\u00e8me \u00e9tage\r\n4, place Jussieu\r\n75005 Paris \u2013 France - France)"],"affiliations":[{"raw_affiliation_string":"MLIA - Machine Learning and Information Access (Tour 65-66 3\u00e8me \u00e9tage\r\n4, place Jussieu\r\n75005 Paris \u2013 France - France)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055709758","display_name":"L\u00e9on Migus","orcid":null},"institutions":[{"id":"https://openalex.org/I39804081","display_name":"Sorbonne Universit\u00e9","ror":"https://ror.org/02en5vm52","country_code":"FR","type":"funder","lineage":["https://openalex.org/I39804081"]},{"id":"https://openalex.org/I4210158291","display_name":"Laboratoire Jacques-Louis Lions","ror":"https://ror.org/04xmteb38","country_code":"FR","type":"facility","lineage":["https://openalex.org/I1294671590","https://openalex.org/I1326498283","https://openalex.org/I204730241","https://openalex.org/I39804081","https://openalex.org/I4210141950","https://openalex.org/I4210158291"]},{"id":"https://openalex.org/I4210150358","display_name":"Institut Syst\u00e8mes Intelligents et de Robotique","ror":"https://ror.org/05neq8668","country_code":"FR","type":"funder","lineage":["https://openalex.org/I1294671590","https://openalex.org/I154526488","https://openalex.org/I39804081","https://openalex.org/I4210150358","https://openalex.org/I4210159245"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Leon Migus","raw_affiliation_strings":["ANGE - Numerical Analysis, Geophysics and Ecology (France)","ISIR - Institut des Syst\u00e8mes Intelligents et de Robotique (Sorbonne-Universit\u00e9, Boite courrier 173 4 Place JUSSIEU 75252 Paris cedex 05 - France)","LJLL (UMR_7598) - Laboratoire Jacques-Louis Lions (Sorbonne-Universit\u00e9, Bo\u00eete courrier 187 - 75252 Paris Cedex 05 - France)","MLIA - Machine Learning and Information Access (Tour 65-66 3\u00e8me \u00e9tage\r\n4, place Jussieu\r\n75005 Paris \u2013 France - France)"],"affiliations":[{"raw_affiliation_string":"MLIA - Machine Learning and Information Access (Tour 65-66 3\u00e8me \u00e9tage\r\n4, place Jussieu\r\n75005 Paris \u2013 France - France)","institution_ids":[]},{"raw_affiliation_string":"LJLL (UMR_7598) - Laboratoire Jacques-Louis Lions (Sorbonne-Universit\u00e9, Bo\u00eete courrier 187 - 75252 Paris Cedex 05 - France)","institution_ids":["https://openalex.org/I39804081","https://openalex.org/I4210158291"]},{"raw_affiliation_string":"ISIR - Institut des Syst\u00e8mes Intelligents et de Robotique (Sorbonne-Universit\u00e9, Boite courrier 173 4 Place JUSSIEU 75252 Paris cedex 05 - France)","institution_ids":["https://openalex.org/I39804081","https://openalex.org/I4210150358"]},{"raw_affiliation_string":"ANGE - Numerical Analysis, Geophysics and Ecology (France)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063984240","display_name":"Yuan Yin","orcid":"https://orcid.org/0000-0003-1515-0696"},"institutions":[],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Yuan Yin","raw_affiliation_strings":["MLIA - Machine Learning and Information Access (Tour 65-66 3\u00e8me \u00e9tage\r\n4, place Jussieu\r\n75005 Paris \u2013 France - France)"],"affiliations":[{"raw_affiliation_string":"MLIA - Machine Learning and Information Access (Tour 65-66 3\u00e8me \u00e9tage\r\n4, place Jussieu\r\n75005 Paris \u2013 France - France)","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075131621","display_name":"Jocelyn Ahmed Mazari","orcid":null},"institutions":[],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Jocelyn Ahmed Mazari","raw_affiliation_strings":["Extrality (France)"],"affiliations":[{"raw_affiliation_string":"Extrality (France)","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5113667126","display_name":"Patrick Gallinari","orcid":null},"institutions":[{"id":"https://openalex.org/I4210161401","display_name":"Criteo (France)","ror":"https://ror.org/04vyg0r47","country_code":"FR","type":"company","lineage":["https://openalex.org/I4210161401"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Patrick Gallinari","raw_affiliation_strings":["Criteo AI Lab (Paris - France)","MLIA - Machine Learning and Information Access (Tour 65-66 3\u00e8me \u00e9tage\r\n4, place Jussieu\r\n75005 Paris \u2013 France - France)"],"affiliations":[{"raw_affiliation_string":"MLIA - Machine Learning and Information Access (Tour 65-66 3\u00e8me \u00e9tage\r\n4, place Jussieu\r\n75005 Paris \u2013 France - France)","institution_ids":[]},{"raw_affiliation_string":"Criteo AI Lab (Paris - France)","institution_ids":["https://openalex.org/I4210161401"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10360","display_name":"Fluid Dynamics and Turbulent Flows","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11008","display_name":"Aerodynamics and Acoustics in Jet Flows","score":0.9646,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/lift","display_name":"Lift (data mining)","score":0.6530709},{"id":"https://openalex.org/keywords/infinity","display_name":"Infinity","score":0.4824065},{"id":"https://openalex.org/keywords/shape-optimization","display_name":"Shape Optimization","score":0.4684451}],"concepts":[{"id":"https://openalex.org/C112124176","wikidata":"https://www.wikidata.org/wiki/Q4698744","display_name":"Airfoil","level":2,"score":0.76958627},{"id":"https://openalex.org/C139002025","wikidata":"https://www.wikidata.org/wiki/Q3001212","display_name":"Lift (data mining)","level":2,"score":0.6530709},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5752627},{"id":"https://openalex.org/C7321624","wikidata":"https://www.wikidata.org/wiki/Q205","display_name":"Infinity","level":2,"score":0.4824065},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.4788613},{"id":"https://openalex.org/C72921944","wikidata":"https://www.wikidata.org/wiki/Q206621","display_name":"Drag","level":2,"score":0.4702935},{"id":"https://openalex.org/C29513896","wikidata":"https://www.wikidata.org/wiki/Q7489239","display_name":"Shape optimization","level":3,"score":0.4684451},{"id":"https://openalex.org/C2776799497","wikidata":"https://www.wikidata.org/wiki/Q484298","display_name":"Surface (topology)","level":2,"score":0.45442298},{"id":"https://openalex.org/C182748727","wikidata":"https://www.wikidata.org/wiki/Q178932","display_name":"Reynolds number","level":3,"score":0.41128382},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.38883197},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.372041},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.35588247},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.34118885},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33786672},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.2114273},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.20445868},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.174218},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.1274707},{"id":"https://openalex.org/C57879066","wikidata":"https://www.wikidata.org/wiki/Q41217","display_name":"Mechanics","level":1,"score":0.09650302},{"id":"https://openalex.org/C135628077","wikidata":"https://www.wikidata.org/wiki/Q220184","display_name":"Finite element method","level":2,"score":0.088862866},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C196558001","wikidata":"https://www.wikidata.org/wiki/Q190132","display_name":"Turbulence","level":2,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.13538","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hal.science/hal-04171439","pdf_url":"https://hal.science/hal-04171439/document","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2307.13538","pdf_url":"http://arxiv.org/pdf/2307.13538","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.13538","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.13538","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.46,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W838937606","https://openalex.org/W4391577352","https://openalex.org/W4210712489","https://openalex.org/W3210836806","https://openalex.org/W2607353083","https://openalex.org/W2389775006","https://openalex.org/W2116307597","https://openalex.org/W2113390765","https://openalex.org/W1912407818","https://openalex.org/W1564882210"],"abstract_inverted_index":{"For":[0],"numerical":[1,28],"design,":[2],"the":[3,23,66,86,112,142],"development":[4],"of":[5,26],"efficient":[6],"and":[7,52,58,80,114,127,136],"accurate":[8],"surrogate":[9],"models":[10],"is":[11],"paramount.":[12],"They":[13],"allow":[14],"us":[15],"to":[16,43,64,141],"approximate":[17],"complex":[18],"physical":[19,53,67,109],"phenomena,":[20],"thereby":[21],"reducing":[22],"computational":[24],"burden":[25],"direct":[27],"simulations.":[29],"We":[30,69],"propose":[31],"INFINITY,":[32],"a":[33,60],"deep":[34],"learning":[35],"model":[36,131],"that":[37,100],"utilizes":[38],"implicit":[39],"neural":[40],"representations":[41,57],"(INRs)":[42],"address":[44],"this":[45],"challenge.":[46],"Our":[47],"framework":[48,102],"encodes":[49],"geometric":[50],"information":[51],"fields":[54,110],"into":[55],"compact":[56],"learns":[59],"mapping":[61],"between":[62],"them":[63],"infer":[65],"fields.":[68],"use":[70],"an":[71,77],"airfoil":[72],"design":[73,125],"optimization":[74],"problem":[75],"as":[76,124],"example":[78],"task":[79],"we":[81,117],"evaluate":[82],"our":[83,101,130],"approach":[84],"on":[85],"challenging":[87],"AirfRANS":[88],"dataset,":[89],"which":[90],"closely":[91],"resembles":[92],"real-world":[93],"industrial":[94],"use-cases.":[95],"The":[96],"experimental":[97],"results":[98],"demonstrate":[99,118],"achieves":[103],"state-of-the-art":[104],"performance":[105],"by":[106],"accurately":[107],"inferring":[108],"throughout":[111],"volume":[113],"surface.":[115],"Additionally":[116],"its":[119],"applicability":[120],"in":[121],"contexts":[122],"such":[123],"exploration":[126],"shape":[128],"optimization:":[129],"can":[132],"correctly":[133],"predict":[134],"drag":[135],"lift":[137],"coefficients":[138],"while":[139],"adhering":[140],"equations.":[143]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385292767","counts_by_year":[],"updated_date":"2025-04-14T07:27:37.304962","created_date":"2023-07-27"}