{"id":"https://openalex.org/W4385292126","doi":"https://doi.org/10.48550/arxiv.2307.13239","title":"RoSAS: Deep Semi-Supervised Anomaly Detection with Contamination-Resilient Continuous Supervision","display_name":"RoSAS: Deep Semi-Supervised Anomaly Detection with Contamination-Resilient Continuous Supervision","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385292126","doi":"https://doi.org/10.48550/arxiv.2307.13239"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.13239","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.13239","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091676049","display_name":"Hongzuo Xu","orcid":"https://orcid.org/0000-0001-8074-1244"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Hongzuo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100429826","display_name":"Yijie Wang","orcid":"https://orcid.org/0000-0002-2913-4016"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yijie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039104219","display_name":"Guansong Pang","orcid":"https://orcid.org/0000-0002-9877-2716"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pang, Guansong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000084858","display_name":"Songlei Jian","orcid":"https://orcid.org/0000-0002-1435-0410"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jian, Songlei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114021276","display_name":"Ning Liu","orcid":"https://orcid.org/0000-0001-8399-8985"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Ning","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100424209","display_name":"Yongjun Wang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yongjun","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9809,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11819","display_name":"Data-Driven Disease Surveillance","score":0.9735,"subfield":{"id":"https://openalex.org/subfields/2713","display_name":"Epidemiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.60227036},{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.5894309},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.46833348}],"concepts":[{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.8478538},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.60227036},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.59832275},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.5894309},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.52166224},{"id":"https://openalex.org/C112570922","wikidata":"https://www.wikidata.org/wiki/Q60528603","display_name":"Contamination","level":2,"score":0.47950938},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.46833348},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4174148},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38253492},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.10151711},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.13239","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2307.13239","pdf_url":"http://arxiv.org/pdf/2307.13239","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.13239","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.13239","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4377864969","https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W2972971679","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2667207928"],"abstract_inverted_index":{"Semi-supervised":[0],"anomaly":[1,7,29,68,84,158,189],"detection":[2,85],"methods":[3],"leverage":[4],"a":[5,74,81,96],"few":[6],"examples":[8],"to":[9,15,64,100,142,148],"yield":[10],"drastically":[11],"improved":[12],"performance":[13,184],"compared":[14],"unsupervised":[16],"models.":[17],"However,":[18],"they":[19],"still":[20],"suffer":[21],"from":[22],"two":[23],"limitations:":[24],"1)":[25],"unlabeled":[26,39],"anomalies":[27],"(i.e.,":[28],"contamination)":[30],"may":[31],"mislead":[32],"the":[33,38,102,118,150,155],"learning":[34,66],"process":[35],"when":[36],"all":[37],"data":[40,58,110,126,132],"are":[41],"employed":[42],"as":[43,54,144],"inliers":[44],"for":[45],"model":[46],"training;":[47],"2)":[48],"only":[49],"discrete":[50],"supervision":[51],"information":[52],"(such":[53],"binary":[55],"or":[56],"ordinal":[57],"labels)":[59],"is":[60,140,201],"exploited,":[61],"which":[62,87],"leads":[63],"suboptimal":[65],"of":[67,104,131,195],"scores":[69],"that":[70,167],"essentially":[71],"take":[72],"on":[73,162],"continuous":[75,90,114],"distribution.":[76],"Therefore,":[77],"this":[78],"paper":[79],"proposes":[80],"novel":[82],"semi-supervised":[83],"method,":[86],"devises":[88],"\\textit{contamination-resilient":[89],"supervisory":[91],"signals}.":[92],"Specifically,":[93],"we":[94],"propose":[95],"mass":[97],"interpolation":[98],"method":[99],"diffuse":[101],"abnormality":[103],"labeled":[105,112,196],"anomalies,":[106],"thereby":[107],"creating":[108],"new":[109,125],"samples":[111,127],"with":[113,133,187],"abnormal":[115],"degrees.":[116],"Meanwhile,":[117],"contaminated":[119],"area":[120],"can":[121],"be":[122],"covered":[123],"by":[124,174],"generated":[128],"via":[129],"combinations":[130],"correct":[134],"labels.":[135],"A":[136],"feature":[137],"learning-based":[138],"objective":[139],"added":[141],"serve":[143],"an":[145],"optimization":[146],"constraint":[147],"regularize":[149],"network":[151],"and":[152,178,182,192],"further":[153],"enhance":[154],"robustness":[156],"w.r.t.":[157],"contamination.":[159],"Extensive":[160],"experiments":[161],"11":[163],"real-world":[164],"datasets":[165],"show":[166],"our":[168],"approach":[169],"significantly":[170],"outperforms":[171],"state-of-the-art":[172],"competitors":[173],"20%-30%":[175],"in":[176,185],"AUC-PR":[177],"obtains":[179],"more":[180],"robust":[181],"superior":[183],"settings":[186],"different":[188],"contamination":[190],"levels":[191],"varying":[193],"numbers":[194],"anomalies.":[197],"The":[198],"source":[199],"code":[200],"available":[202],"at":[203],"https://github.com/xuhongzuo/rosas/.":[204]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385292126","counts_by_year":[],"updated_date":"2025-01-20T06:24:58.239073","created_date":"2023-07-27"}