{"id":"https://openalex.org/W4385262409","doi":"https://doi.org/10.48550/arxiv.2307.12968","title":"A Connection between One-Step Regularization and Critic Regularization in Reinforcement Learning","display_name":"A Connection between One-Step Regularization and Critic Regularization in Reinforcement Learning","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385262409","doi":"https://doi.org/10.48550/arxiv.2307.12968"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.12968","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.12968","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5035051008","display_name":"Benjamin Eysenbach","orcid":"https://orcid.org/0009-0000-7136-6307"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Eysenbach, Benjamin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110482875","display_name":"Matthieu Geist","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Geist, Matthieu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026322200","display_name":"Sergey Levine","orcid":"https://orcid.org/0000-0001-6764-2743"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Levine, Sergey","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5071983998","display_name":"Ruslan Salakhutdinov","orcid":"https://orcid.org/0000-0002-3752-2756"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Salakhutdinov, Ruslan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.778623,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12794","display_name":"Adaptive Dynamic Programming Control","score":0.9922,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10603","display_name":"Smart Grid Energy Management","score":0.9585,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.7962036},{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.55539894},{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.49973512}],"concepts":[{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.7962036},{"id":"https://openalex.org/C79248915","wikidata":"https://www.wikidata.org/wiki/Q17086776","display_name":"Proximal gradient methods for learning","level":5,"score":0.6936037},{"id":"https://openalex.org/C141718189","wikidata":"https://www.wikidata.org/wiki/Q7309628","display_name":"Regularization perspectives on support vector machines","level":4,"score":0.56899405},{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.55539894},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.530979},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.5235552},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.49973512},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.46068552},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4184423},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3431517},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.28084207},{"id":"https://openalex.org/C135252773","wikidata":"https://www.wikidata.org/wiki/Q1567213","display_name":"Inverse problem","level":2,"score":0.20709115},{"id":"https://openalex.org/C152442038","wikidata":"https://www.wikidata.org/wiki/Q2778212","display_name":"Tikhonov regularization","level":3,"score":0.2007325},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.13480428},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.12968","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2307.12968","pdf_url":"http://arxiv.org/pdf/2307.12968","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.12968","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.12968","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W51219890","https://openalex.org/W2366023887","https://openalex.org/W2258635466","https://openalex.org/W2155823647","https://openalex.org/W2081588180","https://openalex.org/W2080188834","https://openalex.org/W2034445081","https://openalex.org/W1989857057","https://openalex.org/W1943431218","https://openalex.org/W1481686068"],"abstract_inverted_index":{"As":[0],"with":[1,6,42,110,135,159,170,185],"any":[2],"machine":[3],"learning":[4],"problem":[5,166],"limited":[7],"data,":[8],"effective":[9],"offline":[10,152],"RL":[11,72,153,181,189],"algorithms":[12],"require":[13],"careful":[14],"regularization":[15,22,34,83,108,112,131,137,187],"to":[16],"avoid":[17],"overfitting.":[18],"One-step":[19,50],"methods":[20,35,47,154],"perform":[21],"by":[23],"doing":[24],"just":[25,64],"a":[26,43,98,105,111,171],"single":[27,172],"step":[28,173],"of":[29,39,114,174],"policy":[30,40,61,119,175],"improvement,":[31,176],"while":[32],"critic":[33,107,130,186],"do":[36],"many":[37],"steps":[38],"improvement":[41],"regularized":[44],"objective.":[45],"These":[46],"appear":[48],"distinct.":[49],"methods,":[51],"such":[52],"as":[53,120],"advantage-weighted":[54],"regression":[55],"and":[56,74,129,156],"conditional":[57],"behavioral":[58],"cloning,":[59],"truncate":[60],"iteration":[62],"after":[63],"one":[65],"step.":[66],"This":[67],"``early":[68],"stopping''":[69],"makes":[70,146],"one-step":[71,121,157,180],"simple":[73],"stable,":[75],"but":[76,88,177],"can":[77,167],"limit":[78],"its":[79],"asymptotic":[80],"performance.":[81],"Critic":[82],"typically":[84,133],"requires":[85],"more":[86],"compute":[87],"has":[89],"appealing":[90],"lower-bound":[91],"guarantees.":[92],"In":[93],"this":[94],"paper,":[95],"we":[96],"draw":[97],"close":[99],"connection":[100],"between":[101],"these":[102],"methods:":[103],"applying":[104],"multi-step":[106],"method":[109],"coefficient":[113],"1":[115],"yields":[116],"the":[117],"same":[118],"RL.":[122],"While":[123],"practical":[124,151],"implementations":[125],"violate":[126],"our":[127,139,144],"assumptions":[128],"is":[132],"applied":[134],"smaller":[136],"coefficients,":[138],"experiments":[140],"nevertheless":[141],"show":[142],"that":[143,164,179,191],"analysis":[145],"accurate,":[147],"testable":[148],"predictions":[149],"about":[150],"(CQL":[155],"RL)":[158],"commonly-used":[160],"hyperparameters.":[161],"Our":[162],"results":[163],"every":[165],"be":[168,183],"solved":[169],"rather":[178],"might":[182],"competitive":[184],"on":[188],"problems":[190],"demand":[192],"strong":[193],"regularization.":[194]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385262409","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-04T15:55:13.201580","created_date":"2023-07-26"}