{"id":"https://openalex.org/W4385245512","doi":"https://doi.org/10.48550/arxiv.2307.12019","title":"XWalk: Random Walk Based Candidate Retrieval for Product Search","display_name":"XWalk: Random Walk Based Candidate Retrieval for Product Search","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385245512","doi":"https://doi.org/10.48550/arxiv.2307.12019"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.12019","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.12019","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5092539646","display_name":"Jon Eskreis-Winkler","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Eskreis-Winkler, Jon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108104844","display_name":"Yubin Kim","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Yubin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5040737903","display_name":"Andrew Stanton","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stanton, Andrew","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9845,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9752,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/relevance","display_name":"Relevance","score":0.54866993}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.81980246},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6635499},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.6322325},{"id":"https://openalex.org/C121194460","wikidata":"https://www.wikidata.org/wiki/Q856741","display_name":"Random walk","level":2,"score":0.57550925},{"id":"https://openalex.org/C158154518","wikidata":"https://www.wikidata.org/wiki/Q7310970","display_name":"Relevance (law)","level":2,"score":0.54866993},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.52531505},{"id":"https://openalex.org/C90673727","wikidata":"https://www.wikidata.org/wiki/Q901718","display_name":"Product (mathematics)","level":2,"score":0.47245884},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4045881},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35744005},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34789705},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.20626849},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.12019","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.12019","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.12019","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.43,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4297449606","https://openalex.org/W4245069437","https://openalex.org/W2325737604","https://openalex.org/W2106071040","https://openalex.org/W2088166309","https://openalex.org/W2085384747","https://openalex.org/W2038723108","https://openalex.org/W2033630974","https://openalex.org/W1891216533","https://openalex.org/W1597743604"],"abstract_inverted_index":{"In":[0],"e-commerce,":[1],"head":[2,16,33,45,89],"queries":[3,17,34],"account":[4],"for":[5,60],"the":[6,22,105,111],"vast":[7],"majority":[8],"of":[9,107],"gross":[10],"merchandise":[11],"sales":[12],"and":[13,75,84,110,124],"improvements":[14,87],"to":[15,21,28,57,73],"are":[18],"highly":[19,71],"impactful":[20],"business.":[23],"While":[24],"most":[25],"supervised":[26],"approaches":[27],"search":[29,62],"perform":[30],"better":[31],"in":[32,77,88,119,125],"vs.":[35],"tail":[36],"queries,":[37],"we":[38],"propose":[39,50],"a":[40,52,78,99],"method":[41],"that":[42,63],"further":[43],"improves":[44],"query":[46,90],"performance":[47,91],"dramatically.":[48],"We":[49],"XWalk,":[51],"random-walk":[53],"based":[54],"graph":[55],"approach":[56],"candidate":[58],"retrieval":[59,113],"product":[61],"borrows":[64],"from":[65],"recommendation":[66],"system":[67,114],"techniques.":[68],"XWalk":[69,97],"is":[70],"efficient":[72],"train":[74],"inference":[76],"large-scale":[79],"high":[80],"traffic":[81],"e-commerce":[82],"setting,":[83],"shows":[85],"substantial":[86],"over":[92],"state-of-the-art":[93],"neural":[94,100],"retreivers.":[95],"Ensembling":[96],"with":[98],"and/or":[101],"lexical":[102],"retriever":[103],"combines":[104],"best":[106],"both":[108,120],"worlds":[109],"resulting":[112],"outperforms":[115],"all":[116],"other":[117],"methods":[118],"offline":[121],"relevance-based":[122],"evaluation":[123],"online":[126],"A/B":[127],"tests.":[128]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385245512","counts_by_year":[],"updated_date":"2025-01-21T06:23:01.058644","created_date":"2023-07-26"}