{"id":"https://openalex.org/W4384920103","doi":"https://doi.org/10.48550/arxiv.2307.10167","title":"VITS : Variational Inference Thomson Sampling for contextual bandits","display_name":"VITS : Variational Inference Thomson Sampling for contextual bandits","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4384920103","doi":"https://doi.org/10.48550/arxiv.2307.10167"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.10167","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.10167","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113950734","display_name":"Pierre J. Clavier","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Clavier, Pierre","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015344623","display_name":"Tom Huix","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huix, Tom","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5036096413","display_name":"Alain Durmus","orcid":"https://orcid.org/0000-0002-2086-8611"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Durmus, Alain","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11704","display_name":"Mobile Crowdsensing and Crowdsourcing","score":0.9739,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/thompson-sampling","display_name":"Thompson Sampling","score":0.6396393},{"id":"https://openalex.org/keywords/sampling-distribution","display_name":"Sampling distribution","score":0.42204562},{"id":"https://openalex.org/keywords/approximate-inference","display_name":"Approximate inference","score":0.41630808}],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.70667005},{"id":"https://openalex.org/C50817715","wikidata":"https://www.wikidata.org/wiki/Q79895177","display_name":"Regret","level":2,"score":0.68764615},{"id":"https://openalex.org/C73602740","wikidata":"https://www.wikidata.org/wiki/Q7795822","display_name":"Thompson sampling","level":3,"score":0.6396393},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.5619798},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.52957106},{"id":"https://openalex.org/C57830394","wikidata":"https://www.wikidata.org/wiki/Q278079","display_name":"Posterior probability","level":3,"score":0.49946094},{"id":"https://openalex.org/C111350023","wikidata":"https://www.wikidata.org/wiki/Q1191869","display_name":"Markov chain Monte Carlo","level":3,"score":0.49911237},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.49785376},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.46991956},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.46706066},{"id":"https://openalex.org/C52740198","wikidata":"https://www.wikidata.org/wiki/Q1539564","display_name":"Importance sampling","level":3,"score":0.42313653},{"id":"https://openalex.org/C167723999","wikidata":"https://www.wikidata.org/wiki/Q3773214","display_name":"Sampling distribution","level":2,"score":0.42204562},{"id":"https://openalex.org/C2777472644","wikidata":"https://www.wikidata.org/wiki/Q16968992","display_name":"Approximate inference","level":3,"score":0.41630808},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.36764914},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.27824223},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.21849787},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.17175701},{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.12872788},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.08999732},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.10167","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2307.10167","pdf_url":"http://arxiv.org/pdf/2307.10167","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.10167","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.10167","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/1","display_name":"No poverty","score":0.73}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4297794934","https://openalex.org/W4286900966","https://openalex.org/W40900395","https://openalex.org/W3206336800","https://openalex.org/W2887199102","https://openalex.org/W2737100598","https://openalex.org/W2622395160","https://openalex.org/W2607502872","https://openalex.org/W2100193843","https://openalex.org/W1606274310"],"abstract_inverted_index":{"In":[0,73,114],"this":[1,36,74],"paper,":[2,75],"we":[3,76,116,144],"introduce":[4],"and":[5,44,103,132,154],"analyze":[6],"a":[7,78,121],"variant":[8],"of":[9,125,134,149],"the":[10,26,51,126,130,147],"Thompson":[11,83],"sampling":[12,84],"(TS)":[13],"algorithm":[14],"for":[15,112,139],"contextual":[16,141],"bandits.":[17],"At":[18],"each":[19],"round,":[20],"traditional":[21,137],"TS":[22,138],"requires":[23],"samples":[24,46],"from":[25],"current":[27,54],"posterior":[28,95],"distribution,":[29],"which":[30,97],"is":[31,104],"usually":[32],"intractable.":[33],"To":[34],"circumvent":[35],"issue,":[37],"approximate":[38,55],"inference":[39],"techniques":[40,56],"can":[41,65],"be":[42,66],"used":[43],"provide":[45],"with":[47],"distribution":[48],"close":[49],"to":[50,58,100],"posteriors.":[52],"However,":[53],"yield":[57],"either":[59],"poor":[60],"estimation":[61],"(Laplace":[62],"approximation)":[63],"or":[64],"computationally":[67,105],"expensive":[68],"(MCMC":[69],"methods,":[70],"Ensemble":[71],"sampling...).":[72],"propose":[77],"new":[79],"algorithm,":[80],"Varational":[81],"Inference":[82],"VITS,":[85],"based":[86],"on":[87,151],"Gaussian":[88],"Variational":[89],"Inference.":[90],"This":[91],"scheme":[92],"provides":[93],"powerful":[94],"approximations":[96],"are":[98],"easy":[99],"sample":[101],"from,":[102],"efficient,":[106],"making":[107],"it":[108],"an":[109],"ideal":[110],"choice":[111],"TS.":[113],"addition,":[115],"show":[117],"that":[118],"VITS":[119,150],"achieves":[120],"sub-linear":[122],"regret":[123],"bound":[124],"same":[127],"order":[128],"in":[129],"dimension":[131],"number":[133],"round":[135],"as":[136],"linear":[140],"bandit.":[142],"Finally,":[143],"demonstrate":[145],"experimentally":[146],"effectiveness":[148],"both":[152],"synthetic":[153],"real":[155],"world":[156],"datasets.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4384920103","counts_by_year":[],"updated_date":"2025-01-21T01:02:28.134376","created_date":"2023-07-21"}