{"id":"https://openalex.org/W4384647966","doi":"https://doi.org/10.48550/arxiv.2307.08288","title":"Systematic Testing of the Data-Poisoning Robustness of KNN","display_name":"Systematic Testing of the Data-Poisoning Robustness of KNN","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4384647966","doi":"https://doi.org/10.48550/arxiv.2307.08288"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.08288","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.08288","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5038699052","display_name":"Yannan Li","orcid":"https://orcid.org/0000-0002-4407-9027"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Yannan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100456758","display_name":"Jingbo Wang","orcid":"https://orcid.org/0000-0001-5877-2677"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Jingbo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5115076700","display_name":"Chao Wang","orcid":"https://orcid.org/0000-0003-4887-923X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Chao","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9631,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.954,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.8900384},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.5393178}],"concepts":[{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.8900384},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77383983},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.62506425},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5466899},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.5393178},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.49385482},{"id":"https://openalex.org/C16910744","wikidata":"https://www.wikidata.org/wiki/Q7705759","display_name":"Test data","level":2,"score":0.45266777},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.08288","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2307.08288","pdf_url":"http://arxiv.org/pdf/2307.08288","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.08288","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.08288","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/1","score":0.48,"display_name":"No poverty"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3118953353","https://openalex.org/W2891480213","https://openalex.org/W2615667245","https://openalex.org/W2250522181","https://openalex.org/W2158542502","https://openalex.org/W2099971677","https://openalex.org/W209733029","https://openalex.org/W1997978958","https://openalex.org/W1540469842","https://openalex.org/W133774893"],"abstract_inverted_index":{"Data":[0],"poisoning":[1],"aims":[2],"to":[3,16,108,117,131],"compromise":[4],"a":[5,71,86,109,142],"machine":[6],"learning":[7],"based":[8,74],"software":[9],"component":[10],"by":[11],"contaminating":[12],"its":[13,18],"training":[14],"set":[15,143],"change":[17],"prediction":[19,164],"results":[20,148,165],"for":[21,26,85,166],"test":[22,170],"inputs.":[23,171],"Existing":[24],"methods":[25],"deciding":[27],"data-poisoning":[28,83,160],"robustness":[29,84,161],"have":[30,137],"either":[31],"poor":[32],"accuracy":[33],"or":[34],"long":[35],"running":[36],"time":[37],"and,":[38],"more":[39,100],"importantly,":[40],"they":[41,59],"can":[42,77,158],"only":[43],"certify":[44,82],"some":[45],"of":[46,144,162,168],"the":[47,62,103,114,121,128,133,151,169],"truly-robust":[48],"cases,":[49],"but":[50],"remain":[51],"inconclusive":[52],"when":[53],"certification":[54],"fails.":[55],"In":[56],"other":[57],"words,":[58],"cannot":[60],"falsify":[61,78],"truly-non-robust":[63],"cases.":[64],"To":[65],"overcome":[66],"this":[67],"limitation,":[68],"we":[69],"propose":[70],"systematic":[72,125],"testing":[73,126],"method,":[75,106],"which":[76],"as":[79,81],"well":[80],"widely":[87],"used":[88],"supervised-learning":[89,145],"technique":[90],"named":[91],"k-nearest":[92],"neighbors":[93],"(KNN).":[94],"Our":[95,147],"method":[96,140,152],"is":[97],"faster":[98],"and":[99,124,157],"accurate":[101],"than":[102],"baseline":[104],"enumeration":[105],"due":[107],"novel":[110],"over-approximate":[111],"analysis":[112],"in":[113,127],"abstract":[115],"domain,":[116,130],"quickly":[118],"narrow":[119],"down":[120],"search":[122],"space,":[123],"concrete":[129],"find":[132],"actual":[134],"violations.":[135],"We":[136],"evaluated":[138],"our":[139],"on":[141],"datasets.":[146],"show":[149],"that":[150],"significantly":[153],"outperforms":[154],"state-of-the-art":[155],"techniques,":[156],"decide":[159],"KNN":[163],"most":[167]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4384647966","counts_by_year":[],"updated_date":"2025-04-13T02:19:13.694762","created_date":"2023-07-19"}