{"id":"https://openalex.org/W4384389955","doi":"https://doi.org/10.48550/arxiv.2307.06547","title":"Full-resolution Lung Nodule Segmentation from Chest X-ray Images using Residual Encoder-Decoder Networks","display_name":"Full-resolution Lung Nodule Segmentation from Chest X-ray Images using Residual Encoder-Decoder Networks","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4384389955","doi":"https://doi.org/10.48550/arxiv.2307.06547"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.06547","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.06547","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091879252","display_name":"Michael J. Horry","orcid":"https://orcid.org/0000-0001-6691-9739"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Horry, Michael James","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033894707","display_name":"Subrata Chakraborty","orcid":"https://orcid.org/0000-0002-0102-5424"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chakraborty, Subrata","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059040421","display_name":"Biswajeet Pradhan","orcid":"https://orcid.org/0000-0001-9863-2054"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pradhan, Biswajeet","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002818315","display_name":"Manoranjan Paul","orcid":"https://orcid.org/0000-0001-6870-5056"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Paul, Manoranjan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102066008","display_name":"Jing Zhu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Jing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016221020","display_name":"Prabal Datta Barua","orcid":"https://orcid.org/0000-0001-5117-8333"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Barua, Prabal Datta","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074179735","display_name":"U. Rajendra Acharya","orcid":"https://orcid.org/0000-0003-2689-8552"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Acharya, U. Rajendra","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100400043","display_name":"Fang Chen","orcid":"https://orcid.org/0000-0003-4971-8729"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Fang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5047165067","display_name":"Jianlong Zhou","orcid":"https://orcid.org/0000-0001-6034-644X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Jianlong","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.983,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9802,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/nodule","display_name":"Nodule (geology)","score":0.53974354}],"concepts":[{"id":"https://openalex.org/C64869954","wikidata":"https://www.wikidata.org/wiki/Q1859747","display_name":"False positive paradox","level":2,"score":0.6975924},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62278783},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62278175},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.5863977},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.54037225},{"id":"https://openalex.org/C2776731575","wikidata":"https://www.wikidata.org/wiki/Q2916245","display_name":"Nodule (geology)","level":2,"score":0.53974354},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4829442},{"id":"https://openalex.org/C21200559","wikidata":"https://www.wikidata.org/wiki/Q7451068","display_name":"Sensitivity (control systems)","level":2,"score":0.4530832},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.42778677},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4062166},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.3278759},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.24189052},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.18915558},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C24326235","wikidata":"https://www.wikidata.org/wiki/Q126095","display_name":"Electronic engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.06547","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2307.06547","pdf_url":"http://arxiv.org/pdf/2307.06547","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.06547","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.06547","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.81,"id":"https://metadata.un.org/sdg/3","display_name":"Good health and well-being"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3209312100","https://openalex.org/W3209204065","https://openalex.org/W2949601986","https://openalex.org/W2788972299","https://openalex.org/W2560215812","https://openalex.org/W2183246718","https://openalex.org/W2099261052","https://openalex.org/W2086542911","https://openalex.org/W1984106201","https://openalex.org/W1557094818"],"abstract_inverted_index":{"Lung":[0],"cancer":[1,7,28],"is":[2,12,161,213,229,249],"the":[3,100,139,142,188],"leading":[4,57],"cause":[5],"of":[6,141,196,205,211,220,267,274],"death":[8],"and":[9,38,62,97,120,148,239],"early":[10],"diagnosis":[11],"associated":[13],"with":[14,66,165,202,243,265],"a":[15,178,194,216,244,270],"positive":[16,122,218,225,272],"prognosis.":[17],"Chest":[18],"X-ray":[19],"(CXR)":[20],"provides":[21],"an":[22,114,127,262],"inexpensive":[23],"imaging":[24],"mode":[25],"for":[26,138,151],"lung":[27,73,102,111,153],"diagnosis.":[29],"Suspicious":[30],"nodules":[31,74,112,168],"are":[32,95,107,124],"difficult":[33],"to":[34,49,85,109,130,231],"distinguish":[35],"from":[36,91,113,182],"vascular":[37],"bone":[39],"structures":[40],"using":[41,75,99,126],"CXR.":[42],"Computer":[43],"vision":[44],"has":[45],"previously":[46],"been":[47],"proposed":[48,255],"assist":[50],"human":[51],"radiologists":[52],"in":[53,171,198],"this":[54,70],"task,":[55],"however,":[56],"studies":[58],"use":[59],"down-sampled":[60],"images":[61,84],"computationally":[63,233],"expensive":[64],"methods":[65],"unproven":[67],"generalization.":[68],"Instead,":[69],"study":[71],"localizes":[72],"efficient":[76],"encoder-decoder":[77],"neural":[78],"networks":[79,94,106],"that":[80,158,248],"process":[81],"full":[82],"resolution":[83,147],"avoid":[86],"any":[87,132],"signal":[88],"loss":[89],"resulting":[90],"down-sampling.":[92],"Encoder-decoder":[93],"trained":[96],"tested":[98],"JSRT":[101],"nodule":[103,154,159],"dataset.":[104,118],"The":[105,254],"used":[108],"localize":[110],"independent":[115],"external":[116,263],"CXR":[117],"Sensitivity":[119],"false":[121,203,217,224,271],"rates":[123],"measured":[125],"automated":[128],"framework":[129],"eliminate":[131],"observer":[133],"subjectivity.":[134],"These":[135],"experiments":[136],"allow":[137],"determination":[140],"optimal":[143],"network":[144],"depth,":[145],"image":[146],"pre-processing":[149],"pipeline":[150],"generalized":[152],"localization.":[155],"We":[156],"find":[157],"localization":[160],"influenced":[162],"by":[163],"subtlety,":[164],"more":[166,232],"subtle":[167],"being":[169],"detected":[170],"earlier":[172],"training":[173],"epochs.":[174],"Therefore,":[175],"we":[176],"propose":[177],"novel":[179],"self-ensemble":[180],"model":[181],"three":[183],"consecutive":[184],"epochs":[185],"centered":[186],"on":[187,237],"validation":[189],"optimum.":[190],"This":[191,227],"ensemble":[192],"achieved":[193,214,257],"sensitivity":[195,210,266],"85%":[197],"10-fold":[199],"internal":[200],"testing":[201],"positives":[204],"8":[206],"per":[207],"image.":[208],"A":[209],"81%":[212],"at":[215,269],"rate":[219,273],"6":[221],"following":[222],"morphological":[223],"reduction.":[226],"result":[228],"comparable":[230],"complex":[234],"systems":[235],"based":[236],"linear":[238],"spatial":[240],"filtering,":[241],"but":[242],"sub-second":[245],"inference":[246],"time":[247],"faster":[250],"than":[251],"other":[252],"methods.":[253],"algorithm":[256],"excellent":[258],"generalization":[259],"results":[260],"against":[261],"dataset":[264],"77%":[268],"7.6.":[275]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4384389955","counts_by_year":[],"updated_date":"2025-02-21T15:52:49.049060","created_date":"2023-07-15"}