{"id":"https://openalex.org/W4384389672","doi":"https://doi.org/10.48550/arxiv.2307.06338","title":"Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders (DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN)","display_name":"Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders (DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN)","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4384389672","doi":"https://doi.org/10.48550/arxiv.2307.06338"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.06338","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.06338","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103112633","display_name":"Fernando Vega","orcid":"https://orcid.org/0000-0003-0013-8133"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Vega, Fernando","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054510053","display_name":"Abdoljalil Addeh","orcid":"https://orcid.org/0000-0003-2727-4557"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Addeh, Abdoljalil","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5012020840","display_name":"M. Ethan MacDonald","orcid":"https://orcid.org/0000-0001-5421-3536"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"MacDonald, M. Ethan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.906028,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10378","display_name":"Advanced MRI Techniques and Applications","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10378","display_name":"Advanced MRI Techniques and Applications","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9869,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10727","display_name":"Ultrasound Imaging and Elastography","score":0.9725,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.44735515},{"id":"https://openalex.org/keywords/resampling","display_name":"Resampling","score":0.43126652},{"id":"https://openalex.org/keywords/rician-fading","display_name":"Rician fading","score":0.4131587}],"concepts":[{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.6384358},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62097317},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5933152},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5074269},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.46255177},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.44735515},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.43721163},{"id":"https://openalex.org/C150921843","wikidata":"https://www.wikidata.org/wiki/Q1170431","display_name":"Resampling","level":2,"score":0.43126652},{"id":"https://openalex.org/C13944312","wikidata":"https://www.wikidata.org/wiki/Q7512748","display_name":"Signal-to-noise ratio (imaging)","level":2,"score":0.42559147},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4192808},{"id":"https://openalex.org/C60472773","wikidata":"https://www.wikidata.org/wiki/Q7331156","display_name":"Rician fading","level":4,"score":0.4131587},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.4111619},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.3481524},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.32026902},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.31679308},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23163885},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.07852927},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.073709786},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C81978471","wikidata":"https://www.wikidata.org/wiki/Q1196572","display_name":"Fading","level":3,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.06338","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.06338","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.06338","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385545089","https://openalex.org/W3131327266","https://openalex.org/W3037110488","https://openalex.org/W3013693939","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2151180595","https://openalex.org/W2146680430","https://openalex.org/W2100999214"],"abstract_inverted_index":{"In":[0],"this":[1],"work,":[2],"a":[3,52,57,81],"denoising":[4],"Cycle-GAN":[5],"(Cycle":[6],"Consistent":[7],"Generative":[8],"Adversarial":[9],"Network)":[10],"is":[11],"implemented":[12],"to":[13,43,50,91],"yield":[14],"high-field,":[15],"high":[16,18],"resolution,":[17,31],"signal-to-noise":[19],"ratio":[20],"(SNR)":[21],"Magnetic":[22],"Resonance":[23],"Imaging":[24],"(MRI)":[25],"images":[26,95],"from":[27],"simulated":[28],"low-field,":[29],"low":[30,32],"SNR":[33],"MRI":[34,94],"images.":[35],"Resampling":[36],"and":[37,56,61,70,96],"additive":[38],"Rician":[39],"noise":[40],"were":[41,48,66],"used":[42],"simulate":[44],"low-field":[45,93],"MRI.":[46],"Images":[47],"utilized":[49],"train":[51],"Denoising":[53],"Autoencoder":[54],"(DAE)":[55],"Cycle-GAN,":[58],"with":[59],"paired":[60],"unpaired":[62],"cases.":[63],"Both":[64],"networks":[65],"evaluated":[67],"using":[68],"SSIM":[69],"PSNR":[71],"image":[72,100],"quality":[73],"metrics.":[74],"This":[75],"work":[76],"demonstrates":[77],"the":[78],"use":[79],"of":[80],"generative":[82],"deep":[83],"learning":[84],"model":[85],"that":[86],"can":[87],"outperform":[88],"classical":[89],"DAEs":[90],"improve":[92],"does":[97],"not":[98],"require":[99],"pairs.":[101]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4384389672","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-06T06:26:44.745999","created_date":"2023-07-15"}