{"id":"https://openalex.org/W4384115378","doi":"https://doi.org/10.48550/arxiv.2307.05399","title":"Domain-Agnostic Neural Architecture for Class Incremental Continual Learning in Document Processing Platform","display_name":"Domain-Agnostic Neural Architecture for Class Incremental Continual Learning in Document Processing Platform","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4384115378","doi":"https://doi.org/10.48550/arxiv.2307.05399"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.05399","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.05399","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102824227","display_name":"Mateusz W\u00f3jcik","orcid":"https://orcid.org/0009-0008-0547-9467"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"W\u00f3jcik, Mateusz","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067756282","display_name":"Witold Ko\u015bciukiewicz","orcid":"https://orcid.org/0009-0001-0192-8850"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ko\u015bciukiewicz, Witold","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089945085","display_name":"Mateusz Baran","orcid":"https://orcid.org/0000-0001-9667-5579"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Baran, Mateusz","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050914099","display_name":"Tomasz Kajdanowicz","orcid":"https://orcid.org/0000-0002-8417-1012"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kajdanowicz, Tomasz","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5086646300","display_name":"Adam Gonczarek","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gonczarek, Adam","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9838,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.972,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/usable","display_name":"USable","score":0.62826663}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8192835},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.6939378},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.6403928},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62944657},{"id":"https://openalex.org/C2780615836","wikidata":"https://www.wikidata.org/wiki/Q2471869","display_name":"USable","level":2,"score":0.62826663},{"id":"https://openalex.org/C202615002","wikidata":"https://www.wikidata.org/wiki/Q783507","display_name":"Differentiable function","level":2,"score":0.5711949},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.52345914},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.51826453},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.47880468},{"id":"https://openalex.org/C49774154","wikidata":"https://www.wikidata.org/wiki/Q131765","display_name":"Multimedia","level":1,"score":0.08459261},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.05399","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.05399","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.05399","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.51,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388292429","https://openalex.org/W4327738859","https://openalex.org/W4285277090","https://openalex.org/W2982321410","https://openalex.org/W2940029036","https://openalex.org/W2756595502","https://openalex.org/W2392004567","https://openalex.org/W2187233292","https://openalex.org/W2046296964","https://openalex.org/W2010789764"],"abstract_inverted_index":{"Production":[0],"deployments":[1],"in":[2,22,26,47,66,108,116],"complex":[3],"systems":[4],"require":[5],"ML":[6],"architectures":[7],"to":[8,45,59,113],"be":[9],"highly":[10],"efficient":[11],"and":[12,30,56,111,129],"usable":[13],"against":[14],"multiple":[15],"tasks.":[16],"Particularly":[17],"demanding":[18],"are":[19,97],"classification":[20],"problems":[21],"which":[23],"data":[24],"arrives":[25],"a":[27,74,126],"streaming":[28],"fashion":[29],"each":[31,95],"class":[32,96],"is":[33],"presented":[34,98],"separately.":[35,99],"Recent":[36],"methods":[37],"with":[38],"stochastic":[39],"gradient":[40],"learning":[41],"have":[42,51],"been":[43],"shown":[44],"struggle":[46],"such":[48],"setups":[49],"or":[50],"limitations":[52],"like":[53],"memory":[54,127],"buffers,":[55],"being":[57],"restricted":[58],"specific":[60],"domains":[61,110],"that":[62,85,104],"disable":[63],"its":[64,106],"usage":[65],"real-world":[67],"scenarios.":[68],"For":[69],"this":[70],"reason,":[71],"we":[72],"present":[73],"fully":[75],"differentiable":[76],"architecture":[77],"based":[78],"on":[79],"the":[80,87,132],"Mixture":[81],"of":[82,89],"Experts":[83],"model,":[84],"enables":[86],"training":[88],"high-performance":[90],"classifiers":[91],"when":[92],"examples":[93],"from":[94],"We":[100],"conducted":[101],"exhaustive":[102],"experiments":[103],"proved":[105],"applicability":[107],"various":[109],"ability":[112],"learn":[114],"online":[115],"production":[117],"environments.":[118],"The":[119],"proposed":[120],"technique":[121],"achieves":[122],"SOTA":[123],"results":[124],"without":[125],"buffer":[128],"clearly":[130],"outperforms":[131],"reference":[133],"methods.":[134]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4384115378","counts_by_year":[],"updated_date":"2025-01-02T04:31:14.267221","created_date":"2023-07-13"}