{"id":"https://openalex.org/W4384112431","doi":"https://doi.org/10.48550/arxiv.2307.05352","title":"Leveraging Variational Autoencoders for Parameterized MMSE Channel Estimation","display_name":"Leveraging Variational Autoencoders for Parameterized MMSE Channel Estimation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4384112431","doi":"https://doi.org/10.48550/arxiv.2307.05352"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.05352","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://arxiv.org/abs/2307.05352","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042553868","display_name":"Michael Baur","orcid":"https://orcid.org/0000-0002-3697-6828"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Baur, Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034199583","display_name":"Benedikt Fesl","orcid":"https://orcid.org/0000-0002-1431-5885"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fesl, Benedikt","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5004140094","display_name":"Wolfgang Utschick","orcid":"https://orcid.org/0000-0002-2871-4246"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Utschick, Wolfgang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.999412,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":90},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10931","display_name":"Direction-of-Arrival Estimation Techniques","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.65828514}],"concepts":[{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.81049263},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.65828514},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.638233},{"id":"https://openalex.org/C90652560","wikidata":"https://www.wikidata.org/wiki/Q11091747","display_name":"Minimum mean square error","level":3,"score":0.6017113},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.56042933},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.41410777},{"id":"https://openalex.org/C165646398","wikidata":"https://www.wikidata.org/wiki/Q3755281","display_name":"Minimum-variance unbiased estimator","level":3,"score":0.41392544},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.38033497},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.34189874},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.33160573},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.3017662},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.28480634}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.05352","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2307.05352","pdf_url":"http://arxiv.org/pdf/2307.05352","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/tsp.2024.3439097","pdf_url":null,"source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.05352","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.05352","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":48,"referenced_works":["https://openalex.org/W1511368807","https://openalex.org/W1723619723","https://openalex.org/W1836465849","https://openalex.org/W1909320841","https://openalex.org/W1959608418","https://openalex.org/W1968367053","https://openalex.org/W1997834106","https://openalex.org/W2051275493","https://openalex.org/W2094655360","https://openalex.org/W2097998348","https://openalex.org/W2119456443","https://openalex.org/W2130700086","https://openalex.org/W2157921975","https://openalex.org/W2170912900","https://openalex.org/W2276892413","https://openalex.org/W2284050935","https://openalex.org/W2565589031","https://openalex.org/W2594057160","https://openalex.org/W2738538347","https://openalex.org/W2781054684","https://openalex.org/W2793783688","https://openalex.org/W2883265831","https://openalex.org/W2948978827","https://openalex.org/W2959300817","https://openalex.org/W2963206527","https://openalex.org/W3020705963","https://openalex.org/W3021094251","https://openalex.org/W3096647320","https://openalex.org/W3111067891","https://openalex.org/W3120429547","https://openalex.org/W3172949370","https://openalex.org/W3193917007","https://openalex.org/W3210680003","https://openalex.org/W3212906268","https://openalex.org/W4233159434","https://openalex.org/W4243833160","https://openalex.org/W4287029002","https://openalex.org/W4288072110","https://openalex.org/W4298857773","https://openalex.org/W4301028776","https://openalex.org/W4312732721","https://openalex.org/W4313150549","https://openalex.org/W4323520903","https://openalex.org/W4323521062","https://openalex.org/W4389471216","https://openalex.org/W4392309295","https://openalex.org/W4392903401","https://openalex.org/W4403182726"],"related_works":["https://openalex.org/W3125536267","https://openalex.org/W2585209928","https://openalex.org/W2521753262","https://openalex.org/W2356451205","https://openalex.org/W2274645452","https://openalex.org/W2075897667","https://openalex.org/W2028334336","https://openalex.org/W1999706086","https://openalex.org/W1990624027","https://openalex.org/W1513121561"],"abstract_inverted_index":{"In":[0],"this":[1],"manuscript,":[2],"we":[3,169],"propose":[4,74],"to":[5,52,83,110,190,197,225],"use":[6],"a":[7,13,44,66,119,155,175,198],"variational":[8,22,63,215],"autoencoder-based":[9,216],"framework":[10,186],"for":[11,69,174],"parameterizing":[12],"conditional":[14,35],"linear":[15],"minimum":[16,55,131],"mean":[17,56,132],"squared":[18,57,133],"error":[19,58,134],"estimator.":[20],"The":[21,47,92],"autoencoder":[23,64],"models":[24],"the":[25,34,41,54,62,70,87,124,127,130,137,141,146,151,162,184,209,213],"underlying":[26],"unknown":[27],"data":[28,85,112],"distribution":[29],"as":[30,65,104],"conditionally":[31],"Gaussian,":[32],"yielding":[33],"first":[36,207],"and":[37,89,129,140,180,218,228],"second":[38],"moments":[39],"of":[40,201,212],"estimand,":[42],"given":[43],"noisy":[45,99],"observation.":[46],"derived":[48],"estimator":[49,59,76,94,153],"is":[50,101,159,187],"shown":[51],"approximate":[53],"by":[60,122],"utilizing":[61],"generative":[67],"prior":[68],"estimation":[71,90,143,163,192,202,222],"problem.":[72],"We":[73,117],"three":[75],"variants":[77],"that":[78,150],"differ":[79],"in":[80,161],"their":[81],"access":[82,109],"ground-truth":[84,111],"during":[86,113],"training":[88,114,138],"phases.":[91],"proposed":[93,128,152,185,214],"variant":[95],"trained":[96],"solely":[97],"on":[98],"observations":[100],"particularly":[102],"noteworthy":[103],"it":[105],"does":[106],"not":[107,188],"require":[108],"or":[115],"estimation.":[116],"conduct":[118],"rigorous":[120],"analysis":[121,211],"bounding":[123],"difference":[125],"between":[126],"estimator,":[135],"connecting":[136],"objective":[139],"resulting":[142,147],"performance.":[144],"Furthermore,":[145],"bound":[148],"reveals":[149],"entails":[154],"bias-variance":[156],"tradeoff,":[157],"which":[158],"well-known":[160],"literature.":[164],"As":[165],"an":[166],"example":[167],"application,":[168],"portray":[170],"channel":[171,191],"estimation,":[172],"allowing":[173],"structured":[176],"covariance":[177],"matrix":[178],"parameterization":[179],"low-complexity":[181],"implementation.":[182],"Nevertheless,":[183],"limited":[189],"but":[193],"can":[194],"be":[195],"applied":[196],"broad":[199],"class":[200],"problems.":[203],"Extensive":[204],"numerical":[205],"simulations":[206],"validate":[208],"theoretical":[210],"estimators":[217],"then":[219],"demonstrate":[220],"excellent":[221],"performance":[223],"compared":[224],"related":[226],"classical":[227],"machine":[229],"learning-based":[230],"state-of-the-art":[231],"estimators.":[232]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4384112431","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-04T14:54:54.917937","created_date":"2023-07-13"}