{"id":"https://openalex.org/W4384111620","doi":"https://doi.org/10.48550/arxiv.2307.04841","title":"Loss Dynamics of Temporal Difference Reinforcement Learning","display_name":"Loss Dynamics of Temporal Difference Reinforcement Learning","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4384111620","doi":"https://doi.org/10.48550/arxiv.2307.04841"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.04841","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.04841","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5039282308","display_name":"Blake Bordelon","orcid":"https://orcid.org/0000-0003-0455-9445"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bordelon, Blake","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087212561","display_name":"Paul Masset","orcid":"https://orcid.org/0000-0003-2001-7515"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Masset, Paul","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078096030","display_name":"Henry Kuo","orcid":"https://orcid.org/0000-0002-4667-4794"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kuo, Henry","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5023195984","display_name":"Cengiz Pehlevan","orcid":"https://orcid.org/0000-0001-9767-6063"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pehlevan, Cengiz","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.801367,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":66,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11513","display_name":"stochastic dynamics and bifurcation","score":0.949,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11513","display_name":"stochastic dynamics and bifurcation","score":0.949,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10581","display_name":"Neural dynamics and brain function","score":0.9165,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T12659","display_name":"Innovation Diffusion and Forecasting","score":0.9117,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/temporal-difference-learning","display_name":"Temporal difference learning","score":0.7574224}],"concepts":[{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.7849472},{"id":"https://openalex.org/C196340769","wikidata":"https://www.wikidata.org/wiki/Q7698910","display_name":"Temporal difference learning","level":3,"score":0.7574224},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5450871},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50051737},{"id":"https://openalex.org/C2780069185","wikidata":"https://www.wikidata.org/wiki/Q7977945","display_name":"Equivalence (formal languages)","level":2,"score":0.42568287},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41055226},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.34080648},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.04841","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.04841","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.04841","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4386462264","https://openalex.org/W4364306694","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424","https://openalex.org/W2341346307","https://openalex.org/W2145363145"],"abstract_inverted_index":{"Reinforcement":[0],"learning":[1,40,70,75,150,158,171,180,201],"has":[2],"been":[3],"successful":[4],"across":[5],"several":[6],"applications":[7],"in":[8,16,137,142,203],"which":[9],"agents":[10],"have":[11],"to":[12,14,46,50,65,126,134,191],"learn":[13],"act":[15],"environments":[17],"with":[18,80,101],"sparse":[19],"feedback.":[20],"However,":[21],"despite":[22],"this":[23,57],"empirical":[24],"success":[25],"there":[26],"is":[27,86],"still":[28],"a":[29,77,89,193,198],"lack":[30],"of":[31,34,38,54,76,130,200],"theoretical":[32],"understanding":[33],"how":[35,149,168],"the":[36,43,52,67,96,121,128,138],"parameters":[37],"reinforcement":[39,204],"models":[41],"and":[42,107,152,162,174,182],"features":[44],"used":[45],"represent":[47],"states":[48],"interact":[49],"control":[51],"dynamics":[53,151,181,202],"learning.":[55,205],"In":[56],"work,":[58],"we":[59,108],"use":[60],"concepts":[61],"from":[62],"statistical":[63],"physics,":[64],"study":[66,148],"typical":[68],"case":[69],"curves":[71],"for":[72],"temporal":[73],"difference":[74],"value":[78,139],"function":[79,82],"linear":[81],"approximators.":[83],"Our":[84],"theory":[85,199],"derived":[87],"under":[88],"Gaussian":[90,104],"equivalence":[91],"hypothesis":[92],"where":[93],"averages":[94,106],"over":[95],"random":[97],"trajectories":[98],"are":[99],"replaced":[100],"temporally":[102],"correlated":[103],"feature":[105,156],"validate":[109],"our":[110,186],"assumptions":[111],"on":[112,155],"small":[113],"scale":[114],"Markov":[115],"Decision":[116],"Processes.":[117],"We":[118,147,165],"find":[119],"that":[120],"stochastic":[122],"semi-gradient":[123],"noise":[124],"due":[125],"subsampling":[127],"space":[129],"possible":[131],"episodes":[132],"leads":[133],"significant":[135],"plateaus":[136,153],"error,":[140],"unlike":[141],"traditional":[143],"gradient":[144],"descent":[145],"dynamics.":[146],"depend":[154],"structure,":[157],"rate,":[159],"discount":[160],"factor,":[161],"reward":[163,175],"function.":[164],"then":[166],"analyze":[167],"strategies":[169],"like":[170],"rate":[172],"annealing":[173],"shaping":[176],"can":[177],"favorably":[178],"alter":[179],"plateaus.":[183],"To":[184],"conclude,":[185],"work":[187],"introduces":[188],"new":[189,194],"tools":[190],"open":[192],"direction":[195],"towards":[196],"developing":[197]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4384111620","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-06T00:45:44.118360","created_date":"2023-07-13"}