{"id":"https://openalex.org/W4383993621","doi":"https://doi.org/10.48550/arxiv.2307.04632","title":"An End-To-End Analysis of Deep Learning-Based Remaining Useful Life Algorithms for Satefy-Critical 5G-Enabled IIoT Networks","display_name":"An End-To-End Analysis of Deep Learning-Based Remaining Useful Life Algorithms for Satefy-Critical 5G-Enabled IIoT Networks","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4383993621","doi":"https://doi.org/10.48550/arxiv.2307.04632"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.04632","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.04632","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015447491","display_name":"Lorenzo Mario Amorosa","orcid":"https://orcid.org/0000-0002-0405-9611"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Amorosa, Lorenzo Mario","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5092449834","display_name":"Nicol\u00f2 Longhi","orcid":"https://orcid.org/0009-0001-5179-5013"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Longhi, Nicol\u00f2","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019579447","display_name":"Giampaolo Cuozzo","orcid":"https://orcid.org/0000-0001-5954-8343"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cuozzo, Giampaolo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5092449835","display_name":"Weronika Maria Bachan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bachan, Weronika Maria","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5092449836","display_name":"Valerio Lieti","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lieti, Valerio","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005166203","display_name":"Enrico Buracchini","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Buracchini, Enrico","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5022214905","display_name":"Roberto Verdone","orcid":"https://orcid.org/0000-0001-6522-8573"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Verdone, Roberto","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10273","display_name":"IoT and Edge/Fog Computing","score":0.9808,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10273","display_name":"IoT and Edge/Fog Computing","score":0.9808,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12017","display_name":"Recycling and Waste Management Techniques","score":0.9693,"subfield":{"id":"https://openalex.org/subfields/2311","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12079","display_name":"IoT Networks and Protocols","score":0.9586,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/end-to-end-principle","display_name":"End-to-end principle","score":0.65654236}],"concepts":[{"id":"https://openalex.org/C74296488","wikidata":"https://www.wikidata.org/wiki/Q2527392","display_name":"End-to-end principle","level":2,"score":0.65654236},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64491963},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.51789975},{"id":"https://openalex.org/C198329298","wikidata":"https://www.wikidata.org/wiki/Q586358","display_name":"Subcarrier","level":4,"score":0.49611625},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.44263014},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4155653},{"id":"https://openalex.org/C44154836","wikidata":"https://www.wikidata.org/wiki/Q45045","display_name":"Simulation","level":1,"score":0.32400477},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.2162888},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.14836043},{"id":"https://openalex.org/C40409654","wikidata":"https://www.wikidata.org/wiki/Q375889","display_name":"Orthogonal frequency-division multiplexing","level":3,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.04632","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.04632","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.04632","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.64,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W4383993621","https://openalex.org/W4388087363"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2536921773","https://openalex.org/W2534888834","https://openalex.org/W2351865055","https://openalex.org/W2350094060","https://openalex.org/W2349265206","https://openalex.org/W2172159377","https://openalex.org/W2098618074","https://openalex.org/W2091769028","https://openalex.org/W2020731358","https://openalex.org/W1096586872"],"abstract_inverted_index":{"Remaining":[0],"Useful":[1],"Life":[2],"(RUL)":[3],"prediction":[4],"is":[5,24,208],"a":[6,18,55,105,133,153],"critical":[7],"task":[8],"that":[9,30,86,110],"aims":[10],"to":[11,71,96,127,130,136,146,172],"estimate":[12],"the":[13,22,32,74,77,120,128,148,156,198,211,216,229,237],"amount":[14],"of":[15,47,90,104,155,187],"time":[16],"until":[17],"system":[19,158],"fails,":[20],"where":[21,58],"latter":[23],"formed":[25],"by":[26,118,201,215,241],"three":[27],"main":[28],"components,":[29],"is,":[31],"application,":[33],"communication":[34,75],"network,":[35],"and":[36,93,162,175,180,189],"RUL":[37,101,233],"logic.":[38],"In":[39],"this":[40,137],"paper,":[41],"we":[42,53,139,169,193],"provide":[43],"an":[44,48,97],"end-to-end":[45],"analysis":[46],"entire":[49],"RUL-based":[50],"chain.":[51],"Specifically,":[52],"consider":[54],"factory":[56],"floor":[57],"Automated":[59],"Guided":[60],"Vehicles":[61],"(AGVs)":[62],"transport":[63],"dangerous":[64],"liquids":[65],"whose":[66],"fall":[67],"may":[68],"cause":[69],"injuries":[70],"workers.":[72],"Regarding":[73],"infrastructure,":[76],"AGVs":[78,129],"are":[79],"equipped":[80],"with":[81,210,236],"5G":[82,142,204,243],"User":[83],"Equipments":[84],"(UEs)":[85],"collect":[87,170],"real-time":[88],"data":[89,171],"their":[91],"movements":[92],"send":[94],"them":[95],"application":[98],"server.":[99],"The":[100],"logic":[102],"consists":[103],"Deep":[106],"Learning":[107],"(DL)-based":[108],"pipeline":[109],"assesses":[111],"if":[112],"there":[113],"will":[114],"be":[115],"liquid":[116],"falls":[117],"analyzing":[119],"collected":[121],"data,":[122],"and,":[123],"eventually,":[124],"sending":[125],"commands":[126],"avoid":[131],"such":[132],"danger.":[134],"According":[135],"scenario,":[138],"performed":[140],"End-to-End":[141],"NR-compliant":[143],"network":[144,206,245],"simulations":[145],"study":[147],"Round-Trip":[149],"Time":[150],"(RTT)":[151],"as":[152],"function":[154],"overall":[157],"bandwidth,":[159],"subcarrier":[160],"spacing,":[161],"modulation":[163],"order.":[164],"Then,":[165],"via":[166],"real-world":[167],"experiments,":[168],"train,":[173],"test":[174],"compare":[176],"7":[177],"DL":[178],"models":[179],"1":[181],"baseline":[182],"threshold-based":[183],"algorithm":[184],"in":[185],"terms":[186],"cost":[188],"average":[190,212],"advance.":[191],"Finally,":[192],"assess":[194],"whether":[195],"or":[196],"not":[197],"RTT":[199,238],"provided":[200,214,240],"four":[202],"different":[203,242],"NR":[205,244],"architectures":[207],"compatible":[209],"advance":[213],"best-performing":[217],"one-Dimensional":[218],"Convolutional":[219],"Neural":[220],"Network":[221],"(1D-CNN).":[222],"Numerical":[223],"results":[224],"show":[225],"under":[226],"which":[227],"conditions":[228],"DL-based":[230],"approach":[231],"for":[232],"estimation":[234],"matches":[235],"performance":[239],"architectures.":[246]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4383993621","counts_by_year":[],"updated_date":"2025-01-18T17:02:31.651863","created_date":"2023-07-12"}