{"id":"https://openalex.org/W4383987911","doi":"https://doi.org/10.48550/arxiv.2307.03982","title":"TractGeoNet: A geometric deep learning framework for pointwise analysis of tract microstructure to predict language assessment performance","display_name":"TractGeoNet: A geometric deep learning framework for pointwise analysis of tract microstructure to predict language assessment performance","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4383987911","doi":"https://doi.org/10.48550/arxiv.2307.03982"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.03982","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.03982","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5116820688","display_name":"Yuqian Chen","orcid":"https://orcid.org/0009-0005-5613-2920"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Yuqian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056397791","display_name":"Leo Zekelman","orcid":"https://orcid.org/0000-0001-6619-0378"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zekelman, Leo R.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080719369","display_name":"Chaoyi Zhang","orcid":"https://orcid.org/0000-0001-8492-9711"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Chaoyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003841843","display_name":"Tengfei Xue","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xue, Tengfei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041567418","display_name":"Yang Song","orcid":"https://orcid.org/0000-0003-1283-1672"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Song, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012499268","display_name":"Nikos Makris","orcid":"https://orcid.org/0000-0003-0425-3315"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Makris, Nikos","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037057278","display_name":"Yogesh Rathi","orcid":"https://orcid.org/0000-0002-9946-2314"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rathi, Yogesh","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022796764","display_name":"Alexandra J. Golby","orcid":"https://orcid.org/0000-0001-8461-9561"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Golby, Alexandra J.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076697411","display_name":"Weidong Cai","orcid":"https://orcid.org/0000-0003-3706-8896"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cai, Weidong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100403473","display_name":"Fan Zhang","orcid":"https://orcid.org/0000-0002-5032-6039"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Fan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5082042615","display_name":"Lauren J. O\u2019Donnell","orcid":"https://orcid.org/0000-0003-0197-7801"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"O'Donnell, Lauren J.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.876513,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11304","display_name":"Advanced Neuroimaging Techniques and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11304","display_name":"Advanced Neuroimaging Techniques and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9517,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12552","display_name":"Fetal and Pediatric Neurological Disorders","score":0.9368,"subfield":{"id":"https://openalex.org/subfields/2735","display_name":"Pediatrics, Perinatology and Child Health"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/arcuate-fasciculus","display_name":"Arcuate fasciculus","score":0.8247619},{"id":"https://openalex.org/keywords/pointwise","display_name":"Pointwise","score":0.6897017},{"id":"https://openalex.org/keywords/human-connectome-project","display_name":"Human Connectome Project","score":0.4937037},{"id":"https://openalex.org/keywords/smoothness","display_name":"Smoothness","score":0.41863728}],"concepts":[{"id":"https://openalex.org/C2779857881","wikidata":"https://www.wikidata.org/wiki/Q615697","display_name":"Arcuate fasciculus","level":5,"score":0.8247619},{"id":"https://openalex.org/C2777984123","wikidata":"https://www.wikidata.org/wiki/Q9248237","display_name":"Pointwise","level":2,"score":0.6897017},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58451116},{"id":"https://openalex.org/C84787856","wikidata":"https://www.wikidata.org/wiki/Q3076659","display_name":"Tractography","level":4,"score":0.5601105},{"id":"https://openalex.org/C2781192897","wikidata":"https://www.wikidata.org/wiki/Q822050","display_name":"White matter","level":3,"score":0.5531286},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.53362244},{"id":"https://openalex.org/C149550507","wikidata":"https://www.wikidata.org/wiki/Q899360","display_name":"Diffusion MRI","level":3,"score":0.49985528},{"id":"https://openalex.org/C97820695","wikidata":"https://www.wikidata.org/wiki/Q387749","display_name":"Human Connectome Project","level":3,"score":0.4937037},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.47441667},{"id":"https://openalex.org/C102634674","wikidata":"https://www.wikidata.org/wiki/Q868473","display_name":"Smoothness","level":2,"score":0.41863728},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34860313},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.33736897},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.29361194},{"id":"https://openalex.org/C143409427","wikidata":"https://www.wikidata.org/wiki/Q161238","display_name":"Magnetic resonance imaging","level":2,"score":0.29013163},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.26971805},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.22081515},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.16859668},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.117485166},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.085118115},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C3018011982","wikidata":"https://www.wikidata.org/wiki/Q7316120","display_name":"Functional connectivity","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.03982","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.03982","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.03982","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.86,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W7902381","https://openalex.org/W4390263399","https://openalex.org/W4380353731","https://openalex.org/W3126994153","https://openalex.org/W2972411153","https://openalex.org/W2931360818","https://openalex.org/W2355759447","https://openalex.org/W1965402735","https://openalex.org/W1482588182","https://openalex.org/W1480657811"],"abstract_inverted_index":{"We":[0,107],"propose":[1,51,85],"a":[2,25,43,52,86,126],"geometric":[3,225],"deep-learning-based":[4],"framework,":[5],"TractGeoNet,":[6],"for":[7,103,204],"performing":[8],"regression":[9,48,73,105,155],"using":[10,125],"diffusion":[11],"magnetic":[12],"resonance":[13],"imaging":[14],"(dMRI)":[15],"tractography":[16],"and":[17,36,188,193,210,216,239],"associated":[18],"pointwise":[19,33],"tissue":[20,34],"microstructure":[21,35],"measurements.":[22],"By":[23],"employing":[24],"point":[26],"cloud":[27],"representation,":[28],"TractGeoNet":[29,150,220],"can":[30],"directly":[31],"utilize":[32],"positional":[37],"information":[38],"from":[39,135,138],"all":[40,194],"points":[41],"within":[42,97],"fiber":[44,101,133,237],"tract.":[45],"To":[46],"improve":[47],"performance,":[49],"we":[50,84,162],"novel":[53],"loss":[54],"function,":[55],"the":[56,62,69,98,104,109,112,139,158,165,171,176,200,222,230,233],"Paired-Siamese":[57],"Regression":[58],"loss,":[59],"which":[60],"encourages":[61],"model":[63],"to":[64,91,152,228,240,244],"focus":[65],"on":[66,119],"accurately":[67],"predicting":[68,116],"relative":[70],"differences":[71],"between":[72],"label":[74],"scores":[75],"rather":[76],"than":[77],"just":[78],"their":[79,242],"absolute":[80],"values.":[81],"In":[82],"addition,":[83],"Critical":[87],"Region":[88],"Localization":[89],"algorithm":[90],"identify":[92],"highly":[93,173],"predictive":[94,174],"anatomical":[95],"regions":[96,185],"white":[99,131,235],"matter":[100,132,236],"tracts":[102,134,160,238],"task.":[106],"evaluate":[108],"effectiveness":[110],"of":[111,123,128,149,175,199,224,232],"proposed":[113],"method":[114],"by":[115],"individual":[117],"performance":[118,148,180],"two":[120,177],"neuropsychological":[121],"assessments":[122],"language":[124,179,205,249],"dataset":[127],"20":[129],"association":[130],"806":[136],"subjects":[137],"Human":[140],"Connectome":[141],"Project.":[142],"The":[143,182],"results":[144],"demonstrate":[145],"superior":[146,209],"prediction":[147],"compared":[151],"several":[153],"popular":[154],"models.":[156],"Of":[157],"twenty":[159],"studied,":[161],"find":[163],"that":[164],"left":[166],"arcuate":[167],"fasciculus":[168],"tract":[169],"is":[170],"most":[172],"studied":[178],"assessments.":[181],"localized":[183],"critical":[184],"are":[186],"widespread":[187],"distributed":[189],"across":[190],"both":[191],"hemispheres":[192],"cerebral":[195],"lobes,":[196],"including":[197],"areas":[198],"brain":[201],"considered":[202],"important":[203],"function":[206],"such":[207,247],"as":[208,248],"anterior":[211],"temporal":[212],"regions,":[213],"pars":[214],"opercularis,":[215],"precentral":[217],"gyrus.":[218],"Overall,":[219],"demonstrates":[221],"potential":[223],"deep":[226],"learning":[227],"enhance":[229],"study":[231],"brain's":[234],"relate":[241],"structure":[243],"human":[245],"traits":[246],"performance.":[250]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4383987911","counts_by_year":[{"year":2025,"cited_by_count":1}],"updated_date":"2025-04-29T12:42:00.532818","created_date":"2023-07-12"}