{"id":"https://openalex.org/W4383605210","doi":"https://doi.org/10.48550/arxiv.2307.03176","title":"Learning Curves for Noisy Heterogeneous Feature-Subsampled Ridge Ensembles","display_name":"Learning Curves for Noisy Heterogeneous Feature-Subsampled Ridge Ensembles","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4383605210","doi":"https://doi.org/10.48550/arxiv.2307.03176"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.03176","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.03176","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5068036300","display_name":"Benjamin S. Ruben","orcid":"https://orcid.org/0000-0002-5633-4590"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ruben, Benjamin S.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5023195984","display_name":"Cengiz Pehlevan","orcid":"https://orcid.org/0000-0001-9767-6063"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pehlevan, Cengiz","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9852,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9748,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.74419564},{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.55405885}],"concepts":[{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.74419564},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6509654},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64695436},{"id":"https://openalex.org/C32277403","wikidata":"https://www.wikidata.org/wiki/Q740445","display_name":"Ridge","level":2,"score":0.6252687},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6215568},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.5890551},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.5582073},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.55405885},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.4943967},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41737467},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.32901812},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2832781},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.13968095},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.03176","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.03176","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.03176","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4366700029","https://openalex.org/W4287880334","https://openalex.org/W4242029529","https://openalex.org/W3144717507","https://openalex.org/W3122602933","https://openalex.org/W2950038056","https://openalex.org/W2361826657","https://openalex.org/W2289285490","https://openalex.org/W1639290356","https://openalex.org/W1544940847"],"abstract_inverted_index":{"Feature":[0],"bagging":[1],"is":[2],"a":[3,29,64,85,98,102,107,139],"well-established":[4],"ensembling":[5],"method":[6,88],"which":[7],"aims":[8],"to":[9,70,89,101,113,119,126,130],"reduce":[10],"prediction":[11],"variance":[12],"by":[13],"combining":[14],"predictions":[15],"of":[16,24,31,48,63,81,97],"many":[17],"estimators":[18,76],"trained":[19],"on":[20,78],"subsets":[21],"or":[22],"projections":[23],"features.":[25],"Here,":[26],"we":[27,55,93],"develop":[28],"theory":[30],"feature-bagging":[32],"in":[33,44],"noisy":[34],"least-squares":[35],"ridge":[36],"ensembles":[37],"and":[38,115],"simplify":[39],"the":[40,45,60,95],"resulting":[41],"learning":[42,53,142],"curves":[43],"special":[46],"case":[47],"equicorrelated":[49],"data.":[50],"Using":[51],"analytical":[52],"curves,":[54],"demonstrate":[56],"that":[57],"subsampling":[58,114],"shifts":[59],"double-descent":[61],"peak":[62],"linear":[65,104,127],"predictor.":[66],"This":[67],"leads":[68],"us":[69],"introduce":[71],"heterogeneous":[72],"feature":[73,82,143],"ensembling,":[74],"with":[75,134],"built":[77],"varying":[79],"numbers":[80],"dimensions,":[83],"as":[84],"computationally":[86],"efficient":[87],"mitigate":[90],"double-descent.":[91],"Then,":[92],"compare":[94],"performance":[96],"feature-subsampling":[99],"ensemble":[100],"single":[103],"predictor,":[105],"describing":[106],"trade-off":[108],"between":[109],"noise":[110,116],"amplification":[111],"due":[112,118],"reduction":[117],"ensembling.":[120],"Our":[121],"qualitative":[122],"insights":[123],"carry":[124],"over":[125],"classifiers":[128],"applied":[129],"image":[131],"classification":[132],"tasks":[133],"realistic":[135],"datasets":[136],"constructed":[137],"using":[138],"state-of-the-art":[140],"deep":[141],"map.":[144]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4383605210","counts_by_year":[],"updated_date":"2024-12-31T10:52:35.653403","created_date":"2023-07-08"}