{"id":"https://openalex.org/W4383469176","doi":"https://doi.org/10.48550/arxiv.2307.01703","title":"Learning to Augment: Hallucinating Data for Domain Generalized Segmentation","display_name":"Learning to Augment: Hallucinating Data for Domain Generalized Segmentation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4383469176","doi":"https://doi.org/10.48550/arxiv.2307.01703"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.01703","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2307.01703","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100996577","display_name":"Qiyu Sun","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Qiyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077434694","display_name":"Pavlo Melnyk","orcid":"https://orcid.org/0000-0002-6091-861X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Melnyk, Pavlo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042087981","display_name":"Michael Felsberg","orcid":"https://orcid.org/0000-0002-6096-3648"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Felsberg, Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100733950","display_name":"Yang Tang","orcid":"https://orcid.org/0000-0003-0864-5842"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tang, Yang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9916,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6660186},{"id":"https://openalex.org/keywords/hallucinating","display_name":"Hallucinating","score":0.60979015},{"id":"https://openalex.org/keywords/synthetic-data","display_name":"Synthetic data","score":0.4736287},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.4213493}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79678255},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6660186},{"id":"https://openalex.org/C2911011789","wikidata":"https://www.wikidata.org/wiki/Q130741","display_name":"Hallucinating","level":2,"score":0.60979015},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56031936},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.5475867},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5323869},{"id":"https://openalex.org/C2780992000","wikidata":"https://www.wikidata.org/wiki/Q17016113","display_name":"Generator (circuit theory)","level":3,"score":0.49785805},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.4930267},{"id":"https://openalex.org/C160920958","wikidata":"https://www.wikidata.org/wiki/Q7662746","display_name":"Synthetic data","level":2,"score":0.4736287},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44846803},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.4213493},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3517446},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.2896895},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.08137214},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.01703","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.01703","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.01703","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","score":0.81,"display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4376988852","https://openalex.org/W4366999383","https://openalex.org/W4312243476","https://openalex.org/W4296960511","https://openalex.org/W4296551294","https://openalex.org/W4287122539","https://openalex.org/W4226108054","https://openalex.org/W3204676188","https://openalex.org/W3171895902","https://openalex.org/W3101955189"],"abstract_inverted_index":{"Domain":[0],"generalized":[1],"semantic":[2,87],"segmentation":[3],"(DGSS)":[4],"is":[5,16,26],"an":[6,66,109],"essential":[7],"but":[8],"highly":[9],"challenging":[10],"task,":[11],"in":[12,108,197],"which":[13,123],"the":[14,34,45,51,159,163,173,177,183],"model":[15],"trained":[17],"only":[18],"on":[19],"source":[20,59,131,160],"data":[21,25,41,60,63],"and":[22,50,104,154,172,180,187],"any":[23],"target":[24],"not":[27],"available.":[28],"Existing":[29],"DGSS":[30],"methods":[31],"primarily":[32],"standardize":[33],"feature":[35,76,82,91,106,143],"distribution":[36],"or":[37],"utilize":[38],"extra":[39],"domain":[40,54],"for":[42,149,165],"augmentation.":[43],"However,":[44],"former":[46],"sacrifices":[47],"valuable":[48],"information":[49],"latter":[52],"introduces":[53],"biases.":[55],"Therefore,":[56],"generating":[57],"diverse-style":[58],"without":[61],"auxiliary":[62,166],"emerges":[64],"as":[65],"attractive":[67],"strategy.":[68],"In":[69],"light":[70],"of":[71,97,128],"this,":[72],"we":[73,116],"propose":[74],"GAN-based":[75],"augmentation":[77,121],"(GBFA)":[78],"that":[79,191],"hallucinates":[80],"stylized":[81],"maps":[83],"while":[84],"preserving":[85],"their":[86],"contents":[88],"with":[89],"a":[90,125,142],"generator.":[92],"The":[93],"impressive":[94],"generative":[95],"capability":[96],"GANs":[98],"enables":[99],"GBFA":[100,150,153],"to":[101,130,145,182],"perform":[102],"inter-channel":[103],"trainable":[105],"synthesis":[107],"end-to-end":[110],"framework.":[111],"To":[112],"enable":[113],"learning":[114],"GBFA,":[115],"introduce":[117],"random":[118],"image":[119],"color":[120],"(RICA),":[122],"adds":[124],"diverse":[126],"range":[127],"variations":[129],"images":[132,137],"during":[133],"training.":[134,151],"These":[135],"augmented":[136],"are":[138],"then":[139],"passed":[140],"through":[141],"extractor":[144],"obtain":[146],"features":[147],"tailored":[148],"Both":[152],"RICA":[155],"operate":[156],"exclusively":[157],"within":[158],"domain,":[161],"eliminating":[162],"need":[164],"datasets.":[167],"We":[168],"conduct":[169],"extensive":[170],"experiments,":[171],"generalization":[174],"results":[175],"from":[176],"synthetic":[178],"GTAV":[179],"SYNTHIA":[181],"real":[184],"Cityscapes,":[185],"BDDS,":[186],"Mapillary":[188],"datasets":[189],"show":[190],"our":[192],"method":[193],"achieves":[194],"state-of-the-art":[195],"performance":[196],"DGSS.":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4383469176","counts_by_year":[],"updated_date":"2025-01-01T21:56:36.441445","created_date":"2023-07-07"}