{"id":"https://openalex.org/W4380558581","doi":"https://doi.org/10.48550/arxiv.2306.06899","title":"Augmenting Zero-Shot Detection Training with Image Labels","display_name":"Augmenting Zero-Shot Detection Training with Image Labels","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4380558581","doi":"https://doi.org/10.48550/arxiv.2306.06899"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.06899","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2306.06899","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5092160857","display_name":"Katharina Kornmeier","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kornmeier, Katharina","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067279928","display_name":"U Scheler","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Scheler, Ulla","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5110990993","display_name":"Pascal Herrmann","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Herrmann, Pascal","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9828,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9828,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9818,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9287,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.5588878},{"id":"https://openalex.org/keywords/zero","display_name":"Zero (linguistics)","score":0.4414783}],"concepts":[{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.8473276},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.69051975},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6608139},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62838197},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.5588878},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.5454706},{"id":"https://openalex.org/C2778344882","wikidata":"https://www.wikidata.org/wiki/Q278938","display_name":"Shot (pellet)","level":2,"score":0.5211458},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.51869},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.5096376},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.4913086},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.47894698},{"id":"https://openalex.org/C2780813799","wikidata":"https://www.wikidata.org/wiki/Q3274237","display_name":"Zero (linguistics)","level":2,"score":0.4414783},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.38608578},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34831667},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.1274947},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.06899","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2306.06899","pdf_url":"http://arxiv.org/pdf/2306.06899","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2306.06899","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.06899","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4394050964","https://openalex.org/W4214877189","https://openalex.org/W2980279061","https://openalex.org/W2773965352","https://openalex.org/W2551249631","https://openalex.org/W2381179799","https://openalex.org/W2366718574","https://openalex.org/W2359774528","https://openalex.org/W2334685461","https://openalex.org/W2074502265"],"abstract_inverted_index":{"Zero-shot":[0],"detection":[1,4,16,28,45,64,136],"(ZSD),":[2],"i.e.,":[3,161],"on":[5,135,155,157],"classes":[6],"not":[7],"seen":[8],"during":[9],"training,":[10],"is":[11,61],"essential":[12],"for":[13,129,151],"real":[14],"world":[15],"use-cases,":[17],"but":[18],"remains":[19],"a":[20,51,126,140],"difficult":[21],"task.":[22],"Recent":[23],"research":[24],"attempts":[25],"ZSD":[26],"with":[27,100],"models":[29],"that":[30,108],"output":[31,42,118],"embeddings":[32],"instead":[33],"of":[34,43,81,148,168],"direct":[35],"class":[36],"labels.":[37],"To":[38],"this":[39,59,90],"aim,":[40],"the":[41,44,78,85,94,116,120,152,158,166],"model":[46],"must":[47],"be":[48],"aligned":[49],"to":[50,70,73,113,119,132],"learned":[52],"embedding":[53,96,121],"space":[54,97,122],"such":[55],"as":[56],"CLIP.":[57],"However,":[58],"alignment":[60],"hindered":[62],"by":[63,92,143],"data":[65,147],"sets":[66],"which":[67],"are":[68,111],"expensive":[69],"produce":[71],"compared":[72],"image":[74,101,109,145],"classification":[75],"annotations,":[76],"and":[77,123],"resulting":[79],"lack":[80],"category":[82],"diversity":[83],"in":[84,98],"training":[86,134],"data.":[87],"We":[88],"address":[89],"challenge":[91],"leveraging":[93],"CLIP":[95],"combination":[99],"labels":[102,110],"from":[103],"ImageNet.":[104],"Our":[105],"results":[106],"show":[107],"able":[112],"better":[114],"align":[115],"detector":[117],"thus":[124],"have":[125],"high":[127],"potential":[128],"ZSD.":[130],"Compared":[131],"only":[133],"data,":[137],"we":[138,162],"see":[139],"significant":[141],"gain":[142,167],"adding":[144],"label":[146],"3.3":[149],"mAP":[150],"65/15":[153],"split":[154],"COCO":[156],"unseen":[159],"classes,":[160],"more":[163],"than":[164],"double":[165],"related":[169],"work.":[170]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4380558581","counts_by_year":[],"updated_date":"2025-01-04T16:25:20.291166","created_date":"2023-06-14"}