{"id":"https://openalex.org/W4380551082","doi":"https://doi.org/10.48550/arxiv.2306.06079","title":"Deep Learning for Day Forecasts from Sparse Observations","display_name":"Deep Learning for Day Forecasts from Sparse Observations","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4380551082","doi":"https://doi.org/10.48550/arxiv.2306.06079"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.06079","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2306.06079","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091819924","display_name":"Marcin Andrychowicz","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Andrychowicz, Marcin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011235627","display_name":"Lasse Espeholt","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Espeholt, Lasse","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100446377","display_name":"Di Li","orcid":"https://orcid.org/0000-0003-3010-7661"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Di","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110990978","display_name":"Samier Merchant","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Merchant, Samier","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5092160619","display_name":"Alex Merose","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Merose, Alex","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082770337","display_name":"Fred Zyda","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zyda, Fred","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028301764","display_name":"Shreya Agrawal","orcid":"https://orcid.org/0009-0004-6692-8300"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Agrawal, Shreya","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5059729571","display_name":"Nal Kalchbrenner","orcid":"https://orcid.org/0000-0002-8148-3088"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kalchbrenner, Nal","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":13,"citation_normalized_percentile":{"value":0.999723,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10466","display_name":"Meteorological Phenomena and Simulations","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10466","display_name":"Meteorological Phenomena and Simulations","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11234","display_name":"Precipitation Measurement and Analysis","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10029","display_name":"Climate variability and models","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dew-point","display_name":"Dew point","score":0.48549393}],"concepts":[{"id":"https://openalex.org/C24552861","wikidata":"https://www.wikidata.org/wiki/Q2670177","display_name":"Data assimilation","level":2,"score":0.64358985},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63880974},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.62611926},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.48903713},{"id":"https://openalex.org/C82210777","wikidata":"https://www.wikidata.org/wiki/Q178828","display_name":"Dew point","level":2,"score":0.48549393},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.45529628},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4363429},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4306133},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.35857677},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.10521814}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.06079","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2306.06079","pdf_url":"http://arxiv.org/pdf/2306.06079","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2306.06079","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.06079","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/13","score":0.55,"display_name":"Climate action"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2999901697","https://openalex.org/W2770447130","https://openalex.org/W2654527859","https://openalex.org/W2409880565","https://openalex.org/W2276167504","https://openalex.org/W2275929903","https://openalex.org/W2200049685","https://openalex.org/W2034334236","https://openalex.org/W2008769983","https://openalex.org/W1666666856"],"abstract_inverted_index":{"Deep":[0],"neural":[1,14,123,239],"networks":[2],"offer":[3],"an":[4,120],"alternative":[5],"paradigm":[6],"for":[7,96,145,225,236],"modeling":[8],"weather":[9],"conditions.":[10],"The":[11],"ability":[12,43],"of":[13,53,82,100,170],"models":[15,59,93],"to":[16,31,44,72,79,141,189,208,227],"make":[17],"a":[18,23,154,180,198,232],"prediction":[19],"in":[20,168,249,252],"less":[21],"than":[22],"second":[24],"once":[25],"the":[26,42,64,97,112,117,171,210,222],"data":[27,135,161],"is":[28,206,242],"available":[29],"and":[30,38,41,67,94,116,133,137,149,163,183,192,213,219,244],"do":[32],"so":[33],"with":[34,87,254],"very":[35],"high":[36,181],"temporal":[37,182],"spatial":[39,184],"resolution,":[40],"learn":[45],"directly":[46],"from":[47,130],"atmospheric":[48,62],"observations,":[49,63],"are":[50,247],"just":[51],"some":[52],"these":[54],"models'":[55],"unique":[56],"advantages.":[57],"Neural":[58],"trained":[60],"using":[61],"highest":[65],"fidelity":[66],"lowest":[68],"latency":[69],"data,":[70],"have":[71],"date":[73],"achieved":[74],"good":[75],"performance":[76,234],"only":[77,95],"up":[78,140,188,226],"twelve":[80],"hours":[81,143,229],"lead":[83,113],"time":[84,114],"when":[85],"compared":[86],"state-of-the-art":[88],"probabilistic":[89],"Numerical":[90],"Weather":[91],"Prediction":[92],"sole":[98],"variable":[99],"precipitation.":[101],"In":[102],"this":[103],"paper,":[104],"we":[105],"present":[106],"MetNet-3":[107,128,152,178,205,241],"that":[108,119,158,204],"extends":[109],"significantly":[110],"both":[111,131],"range":[115],"variables":[118],"observation":[121,237],"based":[122,238],"model":[124],"can":[125],"predict":[126],"well.":[127],"learns":[129],"dense":[132,166],"sparse":[134,176],"sensors":[136],"makes":[138],"predictions":[139],"24":[142,228],"ahead":[144,230],"precipitation,":[146],"wind,":[147],"temperature":[148],"dew":[150],"point.":[151],"introduces":[153],"key":[155],"densification":[156],"technique":[157],"implicitly":[159],"captures":[160],"assimilation":[162],"produces":[164],"spatially":[165],"forecasts":[167,246],"spite":[169],"network":[172],"training":[173],"on":[174],"extremely":[175],"targets.":[177],"has":[179],"resolution":[185],"of,":[186],"respectively,":[187],"2":[190],"minutes":[191],"1":[193],"km":[194],"as":[195,197,217],"well":[196],"low":[199],"operational":[200,243],"latency.":[201],"We":[202],"find":[203],"able":[207],"outperform":[209],"best":[211],"single-":[212],"multi-member":[214],"NWPs":[215],"such":[216],"HRRR":[218],"ENS":[220],"over":[221],"CONUS":[223],"region":[224],"setting":[231],"new":[233],"milestone":[235],"models.":[240,256],"its":[245],"served":[248],"Google":[250],"Search":[251],"conjunction":[253],"other":[255]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4380551082","counts_by_year":[{"year":2024,"cited_by_count":10},{"year":2023,"cited_by_count":3}],"updated_date":"2025-01-04T16:25:22.768815","created_date":"2023-06-14"}