{"id":"https://openalex.org/W4380356409","doi":"https://doi.org/10.48550/arxiv.2306.05859","title":"Robust Reinforcement Learning via Adversarial Kernel Approximation","display_name":"Robust Reinforcement Learning via Adversarial Kernel Approximation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4380356409","doi":"https://doi.org/10.48550/arxiv.2306.05859"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.05859","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2306.05859","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5108089759","display_name":"Kaixin Wang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Kaixin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5092145987","display_name":"Uri Gadot","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gadot, Uri","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5107933760","display_name":"Navdeep Kumar","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kumar, Navdeep","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022424856","display_name":"Kfir Y. Levy","orcid":"https://orcid.org/0000-0003-1236-2626"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Levy, Kfir","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5036260775","display_name":"Shie Mannor","orcid":"https://orcid.org/0000-0003-4439-7647"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mannor, Shie","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9498,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.9239,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.7086003},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.44721204}],"concepts":[{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.81753564},{"id":"https://openalex.org/C106189395","wikidata":"https://www.wikidata.org/wiki/Q176789","display_name":"Markov decision process","level":3,"score":0.7889855},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7181649},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.7086003},{"id":"https://openalex.org/C79581498","wikidata":"https://www.wikidata.org/wiki/Q1367530","display_name":"Suite","level":2,"score":0.5413366},{"id":"https://openalex.org/C2780598303","wikidata":"https://www.wikidata.org/wiki/Q65921492","display_name":"Flexibility (engineering)","level":2,"score":0.48530596},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.4739542},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.46851918},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46124595},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.44721204},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42423636},{"id":"https://openalex.org/C14646407","wikidata":"https://www.wikidata.org/wiki/Q1430750","display_name":"Bellman equation","level":2,"score":0.42023593},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.34650695},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1523858},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C95457728","wikidata":"https://www.wikidata.org/wiki/Q309","display_name":"History","level":0,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.05859","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2306.05859","pdf_url":"http://arxiv.org/pdf/2306.05859","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2306.05859","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.05859","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.82}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4308702637","https://openalex.org/W4281791088","https://openalex.org/W3105579180","https://openalex.org/W2903299703","https://openalex.org/W2808418668","https://openalex.org/W2386410636","https://openalex.org/W2156021013","https://openalex.org/W2152670157","https://openalex.org/W2016648086","https://openalex.org/W176737593"],"abstract_inverted_index":{"Robust":[0],"Markov":[1],"Decision":[2],"Processes":[3],"(RMDPs)":[4],"provide":[5],"a":[6,43,131],"framework":[7],"for":[8,78,134],"sequential":[9],"decision-making":[10],"that":[11,50,63],"is":[12],"robust":[13,58,136],"to":[14,27,47,56,106,115],"perturbations":[15],"on":[16,94],"the":[17,52,65,75,79,86,122,127],"transition":[18,54],"kernel.":[19],"However,":[20],"current":[21],"RMDP":[22,49],"methods":[23],"are":[24],"often":[25],"limited":[26],"small-scale":[28],"problems,":[29],"hindering":[30],"their":[31],"use":[32],"in":[33,85],"high-dimensional":[34,107,116],"domains.":[35,108],"To":[36],"bridge":[37],"this":[38],"gap,":[39],"we":[40],"present":[41],"EWoK,":[42],"novel":[44],"online":[45],"approach":[46],"solve":[48],"Estimates":[51],"Worst":[53],"Kernel":[55],"learn":[57],"policies.":[59,137],"Unlike":[60],"previous":[61],"works":[62],"regularize":[64],"policy":[66],"or":[67],"value":[68],"updates,":[69],"EWoK":[70,90,128],"achieves":[71],"robustness":[72],"by":[73],"simulating":[74],"worst":[76],"scenarios":[77],"agent":[80],"while":[81],"retaining":[82],"complete":[83],"flexibility":[84],"learning":[87,135],"process.":[88],"Notably,":[89],"can":[91],"be":[92],"applied":[93],"top":[95],"of":[96,126],"any":[97],"off-the-shelf":[98],"{\\em":[99],"non-robust}":[100],"RL":[101],"algorithm,":[102],"enabling":[103],"easy":[104],"scaling":[105],"Our":[109],"experiments,":[110],"spanning":[111],"from":[112],"simple":[113],"Cartpole":[114],"DeepMind":[117],"Control":[118],"Suite":[119],"environments,":[120],"demonstrate":[121],"effectiveness":[123],"and":[124],"applicability":[125],"paradigm":[129],"as":[130],"practical":[132],"method":[133]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4380356409","counts_by_year":[],"updated_date":"2025-01-04T16:26:14.459916","created_date":"2023-06-13"}