{"id":"https://openalex.org/W4379540300","doi":"https://doi.org/10.48550/arxiv.2306.03014","title":"On the Behavior of Intrusive and Non-intrusive Speech Enhancement Metrics in Predictive and Generative Settings","display_name":"On the Behavior of Intrusive and Non-intrusive Speech Enhancement Metrics in Predictive and Generative Settings","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4379540300","doi":"https://doi.org/10.48550/arxiv.2306.03014"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.03014","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2306.03014","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102520429","display_name":"Danilo de Oliveira","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"de Oliveira, Danilo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087017732","display_name":"Julius Richter","orcid":"https://orcid.org/0000-0002-7870-4839"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Richter, Julius","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006784595","display_name":"Jean-Marie Lemercier","orcid":"https://orcid.org/0000-0002-8704-7658"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lemercier, Jean-Marie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077110886","display_name":"Tal Peer","orcid":"https://orcid.org/0000-0002-8974-9127"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Peer, Tal","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5087022569","display_name":"Timo Gerkmann","orcid":"https://orcid.org/0000-0002-8678-4699"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gerkmann, Timo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9686,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10069","display_name":"Antenna Design and Analysis","score":0.9182,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.79353267},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.44371387}],"concepts":[{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.79353267},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75046456},{"id":"https://openalex.org/C2776182073","wikidata":"https://www.wikidata.org/wiki/Q7575395","display_name":"Speech enhancement","level":3,"score":0.74273455},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.5699148},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.5246068},{"id":"https://openalex.org/C2777402240","wikidata":"https://www.wikidata.org/wiki/Q6783436","display_name":"Masking (illustration)","level":2,"score":0.4954158},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.48988813},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47591597},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4580717},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.45119804},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.44371387},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42586264},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.3055585},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.07835394},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.03014","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2306.03014","pdf_url":"http://arxiv.org/pdf/2306.03014","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2306.03014","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.03014","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.75}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390874210","https://openalex.org/W4386184937","https://openalex.org/W4384918963","https://openalex.org/W4365211920","https://openalex.org/W4241564561","https://openalex.org/W3014948380","https://openalex.org/W2987280934","https://openalex.org/W2128027845","https://openalex.org/W2093104230","https://openalex.org/W1493875009"],"abstract_inverted_index":{"Since":[0,73],"its":[1,84],"inception,":[2],"the":[3,43,53,103,106,137,156],"field":[4],"of":[5,55,105,120,150,155],"deep":[6,48],"speech":[7,31,76,88,108,151],"enhancement":[8,109,152],"has":[9],"been":[10,28],"dominated":[11],"by":[12],"predictive":[13,113],"(discriminative)":[14],"approaches,":[15],"such":[16,63],"as":[17,64],"spectral":[18],"mapping":[19],"or":[20],"masking.":[21],"Recently,":[22],"however,":[23],"novel":[24],"generative":[25,115],"approaches":[26],"have":[27,60],"applied":[29],"to":[30,67,78,94],"enhancement,":[32],"attaining":[33],"good":[34],"denoising":[35],"performance":[36,104],"with":[37],"high":[38],"subjective":[39],"quality":[40],"scores.":[41],"At":[42],"same":[44,107],"time,":[45],"advances":[46],"in":[47],"learning":[49],"also":[50],"allowed":[51],"for":[52,131,139],"creation":[54],"neural":[56],"network-based":[57],"metrics,":[58],"which":[59],"desirable":[61],"traits":[62],"being":[65],"able":[66],"work":[68],"without":[69],"a":[70,118,145],"reference":[71],"(non-intrusively).":[72],"generatively":[74],"enhanced":[75,96],"tends":[77],"exhibit":[79],"radically":[80],"different":[81],"residual":[82],"distortions,":[83],"evaluation":[85],"using":[86],"instrumental":[87],"metrics":[89,121,140],"may":[90],"behave":[91],"differently":[92,130],"compared":[93],"predictively":[95],"speech.":[97],"In":[98],"this":[99],"paper,":[100],"we":[101],"evaluate":[102],"backbone":[110],"trained":[111],"under":[112],"and":[114,122,126,147],"paradigms":[116],"on":[117],"variety":[119],"show":[123],"that":[124,141],"intrusive":[125],"non-intrusive":[127],"measures":[128],"correlate":[129],"each":[132],"paradigm.":[133],"This":[134],"analysis":[135],"motivates":[136],"search":[138],"can":[142],"together":[143],"paint":[144],"complete":[146],"unbiased":[148],"picture":[149],"performance,":[153],"irrespective":[154],"model's":[157],"training":[158],"process.":[159]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4379540300","counts_by_year":[],"updated_date":"2025-01-02T01:26:07.477812","created_date":"2023-06-07"}