{"id":"https://openalex.org/W4379089484","doi":"https://doi.org/10.48550/arxiv.2305.19872","title":"Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials","display_name":"Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4379089484","doi":"https://doi.org/10.48550/arxiv.2305.19872"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.19872","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.19872","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083903843","display_name":"Mingguo He","orcid":"https://orcid.org/0009-0006-3869-1187"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Mingguo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074858555","display_name":"Zhewei Wei","orcid":"https://orcid.org/0000-0003-3620-5086"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wei, Zhewei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005049423","display_name":"Shikun Feng","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Feng, Shikun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062586768","display_name":"Zhengjie Huang","orcid":"https://orcid.org/0000-0001-6298-8112"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Zhengjie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100664035","display_name":"Weibin Li","orcid":"https://orcid.org/0000-0001-6731-1311"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Weibin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101870254","display_name":"Yu Sun","orcid":"https://orcid.org/0000-0001-5721-8017"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Yu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5084155236","display_name":"Dianhai Yu","orcid":"https://orcid.org/0000-0002-0163-2603"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Dianhai","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9388,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9156,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6721747},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.601156},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.52525896},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.45574427},{"id":"https://openalex.org/C66882249","wikidata":"https://www.wikidata.org/wiki/Q169336","display_name":"Homogeneous","level":2,"score":0.43004918},{"id":"https://openalex.org/C158207573","wikidata":"https://www.wikidata.org/wiki/Q5747224","display_name":"Heterogeneous network","level":4,"score":0.42456576},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.25561395},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.12742072},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C108037233","wikidata":"https://www.wikidata.org/wiki/Q11375","display_name":"Wireless network","level":3,"score":0.0},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.19872","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.19872","pdf_url":"http://arxiv.org/pdf/2305.19872","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.19872","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.19872","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4366605471","https://openalex.org/W4235240664","https://openalex.org/W3012371152","https://openalex.org/W2606945902","https://openalex.org/W2389214306","https://openalex.org/W2370081772","https://openalex.org/W2159090624","https://openalex.org/W2022479666","https://openalex.org/W1927327903","https://openalex.org/W1544665982"],"abstract_inverted_index":{"Heterogeneous":[0],"Graph":[1,47],"Neural":[2],"Networks":[3,49],"(HGNNs)":[4],"have":[5],"gained":[6],"significant":[7],"popularity":[8],"in":[9,112,136],"various":[10],"heterogeneous":[11,75,82,103,129],"graph":[12,40,100,113,130],"learning":[13,98],"tasks.":[14,139],"However,":[15],"most":[16],"HGNNs":[17,34],"rely":[18],"on":[19,51,63,86,102],"spatial":[20],"domain-based":[21],"message":[22],"passing":[23],"and":[24,30,58,132],"attention":[25],"modules":[26],"for":[27,97],"information":[28],"propagation":[29],"aggregation.":[31],"These":[32],"spatial-based":[33],"neglect":[35],"the":[36,44,56,69,108],"utilization":[37],"of":[38,46,60,71,110],"spectral":[39,99,128],"convolutions,":[41],"which":[42],"are":[43],"foundation":[45],"Convolutional":[48],"(GCN)":[50],"homogeneous":[52,64],"graphs.":[53,76,104],"Inspired":[54],"by":[55],"effectiveness":[57],"scalability":[59],"spectral-based":[61,72],"GNNs":[62,73],"graphs,":[65],"this":[66],"paper":[67],"explores":[68],"extension":[70],"to":[74,121],"We":[77,115],"propose":[78],"PSHGCN,":[79],"a":[80,92],"novel":[81],"convolutional":[83],"network":[84],"based":[85],"positive":[87],"noncommutative":[88],"polynomials.":[89],"PSHGCN":[90,111,124],"provides":[91],"simple":[93],"yet":[94],"effective":[95],"approach":[96],"convolutions":[101,131],"Moreover,":[105],"we":[106],"demonstrate":[107],"rationale":[109],"optimization.":[114],"conducted":[116],"an":[117],"extensive":[118],"experimental":[119],"study":[120],"show":[122],"that":[123],"can":[125],"learn":[126],"diverse":[127],"achieve":[133],"superior":[134],"performance":[135],"node":[137],"classification":[138],"Our":[140],"code":[141],"is":[142],"available":[143],"at":[144],"https://github.com/ivam-he/PSHGCN.":[145]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4379089484","counts_by_year":[],"updated_date":"2025-01-19T17:01:37.217830","created_date":"2023-06-02"}