{"id":"https://openalex.org/W4378945647","doi":"https://doi.org/10.48550/arxiv.2305.19190","title":"Inverse Approximation Theory for Nonlinear Recurrent Neural Networks","display_name":"Inverse Approximation Theory for Nonlinear Recurrent Neural Networks","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4378945647","doi":"https://doi.org/10.48550/arxiv.2305.19190"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.19190","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.19190","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103040536","display_name":"Shida Wang","orcid":"https://orcid.org/0000-0001-7521-8192"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Shida","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100428658","display_name":"Zhong Li","orcid":"https://orcid.org/0000-0003-1124-5778"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Zhong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5069654038","display_name":"Qianxiao Li","orcid":"https://orcid.org/0000-0002-3903-3737"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Qianxiao","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.778623,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9542,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.7238445},{"id":"https://openalex.org/keywords/function-approximation","display_name":"Function Approximation","score":0.57327974},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.45618334},{"id":"https://openalex.org/keywords/inverse-function","display_name":"Inverse function","score":0.42199397}],"concepts":[{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.77381647},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.7238445},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.703839},{"id":"https://openalex.org/C91873725","wikidata":"https://www.wikidata.org/wiki/Q3445816","display_name":"Function approximation","level":3,"score":0.57327974},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5573303},{"id":"https://openalex.org/C207467116","wikidata":"https://www.wikidata.org/wiki/Q4385666","display_name":"Inverse","level":2,"score":0.5152131},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5025525},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.48147073},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.45618334},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.4445457},{"id":"https://openalex.org/C160824197","wikidata":"https://www.wikidata.org/wiki/Q2071054","display_name":"Linear approximation","level":3,"score":0.42204702},{"id":"https://openalex.org/C140528856","wikidata":"https://www.wikidata.org/wiki/Q191884","display_name":"Inverse function","level":3,"score":0.42199397},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.42116585},{"id":"https://openalex.org/C151376022","wikidata":"https://www.wikidata.org/wiki/Q168698","display_name":"Exponential function","level":2,"score":0.4157585},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33598143},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.31204152},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.1473842},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.07207036},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.19190","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.19190","pdf_url":"http://arxiv.org/pdf/2305.19190","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.19190","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.19190","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4322615556","https://openalex.org/W4287555349","https://openalex.org/W3198417070","https://openalex.org/W3133651710","https://openalex.org/W3113111988","https://openalex.org/W2989850910","https://openalex.org/W2988325354","https://openalex.org/W2518491366","https://openalex.org/W2167394514","https://openalex.org/W2144287108"],"abstract_inverted_index":{"We":[0],"prove":[1],"an":[2,65],"inverse":[3],"approximation":[4,8,25],"theorem":[5],"for":[6,103],"the":[7,35,80,90,96,100,112,122],"of":[9,30,84,99],"nonlinear":[10,52,61,92],"sequence-to-sequence":[11],"relationships":[12,54,106],"using":[13],"recurrent":[14],"neural":[15],"networks":[16],"(RNNs).":[17],"This":[18,78],"is":[19],"a":[20,31,44,71,116],"so-called":[21],"Bernstein-type":[22],"result":[23],"in":[24,86,137],"theory,":[26],"which":[27],"deduces":[28],"properties":[29],"target":[32],"function":[33],"under":[34],"assumption":[36],"that":[37,51,55,73],"it":[38],"can":[39,56,74],"be":[40,57,75],"effectively":[41],"approximated":[42,59],"by":[43,60,129],"hypothesis":[45],"space.":[46],"In":[47],"particular,":[48],"we":[49,114],"show":[50],"sequence":[53],"stably":[58],"RNNs":[62,88],"must":[63],"have":[64],"exponential":[66],"decaying":[67],"memory":[68,85],"structure":[69],"-":[70],"notion":[72],"made":[76],"precise.":[77],"extends":[79],"previously":[81],"identified":[82],"curse":[83],"linear":[87],"into":[89],"general":[91],"setting,":[93],"and":[94],"quantifies":[95],"essential":[97],"limitations":[98],"RNN":[101],"architecture":[102],"learning":[104],"sequential":[105],"with":[107],"long-term":[108],"memory.":[109],"Based":[110],"on":[111],"analysis,":[113],"propose":[115],"principled":[117],"reparameterization":[118],"method":[119],"to":[120],"overcome":[121],"limitations.":[123],"Our":[124],"theoretical":[125],"results":[126],"are":[127],"confirmed":[128],"numerical":[130],"experiments.":[131],"The":[132],"code":[133],"has":[134],"been":[135],"released":[136],"https://github.com/radarFudan/Curse-of-memory":[138]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4378945647","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-04T17:35:44.678139","created_date":"2023-06-01"}