{"id":"https://openalex.org/W4378765305","doi":"https://doi.org/10.48550/arxiv.2305.17491","title":"FERMAT: An Alternative to Accuracy for Numerical Reasoning","display_name":"FERMAT: An Alternative to Accuracy for Numerical Reasoning","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4378765305","doi":"https://doi.org/10.48550/arxiv.2305.17491"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.17491","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.17491","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009068676","display_name":"J. Sivakumar","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sivakumar, Jasivan Alex","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5054918343","display_name":"Nafise Sadat Moosavi","orcid":"https://orcid.org/0000-0002-8332-307X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Moosavi, Nafise Sadat","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.8636,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.8636,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13523","display_name":"Mathematics, Computing, and Information Processing","score":0.863,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.8616,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72916734},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.62263566},{"id":"https://openalex.org/C19768560","wikidata":"https://www.wikidata.org/wiki/Q320727","display_name":"Dependency (UML)","level":2,"score":0.51917636},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.4971538},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47565028},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3705352},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3269038},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.3221429},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.23396143},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.17491","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.17491","pdf_url":"http://arxiv.org/pdf/2305.17491","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.17491","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.17491","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.45}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4231021675","https://openalex.org/W4226072953","https://openalex.org/W4211085505","https://openalex.org/W408804804","https://openalex.org/W3122478268","https://openalex.org/W3086365953","https://openalex.org/W2392606101","https://openalex.org/W2154771632","https://openalex.org/W2084758217","https://openalex.org/W2067317451"],"abstract_inverted_index":{"While":[0],"pre-trained":[1],"language":[2,32],"models":[3,33,75,125,148],"achieve":[4],"impressive":[5],"performance":[6],"on":[7,55,76,119,126,149],"various":[8,127],"NLP":[9],"benchmarks,":[10],"they":[11],"still":[12],"struggle":[13],"with":[14],"tasks":[15,185],"that":[16,34],"require":[17],"numerical":[18,24,47,78,107,129,151],"reasoning.":[19],"Recent":[20],"advances":[21],"in":[22,109],"improving":[23],"reasoning":[25,48,79,108,130,152],"are":[26,40,175],"mostly":[27],"achieved":[28],"using":[29,51],"very":[30],"large":[31,164],"contain":[35],"billions":[36],"of":[37,68,73,114,147,161],"parameters":[38],"and":[39,71,81,138,158,173,186],"not":[41,63],"accessible":[42],"to":[43,85,178],"everyone.":[44],"In":[45],"addition,":[46],"is":[49],"measured":[50],"a":[52,59,65,102,116,120,144,156],"single":[53,117],"score":[54,118],"existing":[56,74],"datasets.":[57],"As":[58],"result,":[60],"we":[61,100],"do":[62],"have":[64],"clear":[66],"understanding":[67],"the":[69],"strengths":[70],"shortcomings":[72],"different":[77,150],"aspects":[80,131],"therefore,":[82],"potential":[83],"ways":[84],"improve":[86],"them":[87,91],"apart":[88],"from":[89,142],"scaling":[90],"up.":[92],"Inspired":[93],"by":[94],"CheckList":[95],"(Ribeiro":[96],"et":[97],"al.,":[98],"2020),":[99],"introduce":[101],"multi-view":[103,181],"evaluation":[104,146,167],"set":[105,168],"for":[106,169,183],"English,":[110],"called":[111],"FERMAT.":[112],"Instead":[113],"reporting":[115],"whole":[121],"dataset,":[122],"FERMAT":[123,154],"evaluates":[124],"key":[128],"such":[132],"as":[133],"number":[134],"understanding,":[135],"mathematical":[136],"operations,":[137],"training":[139,165],"dependency.":[140],"Apart":[141],"providing":[143],"comprehensive":[145],"aspects,":[153],"enables":[155],"systematic":[157],"automated":[159],"generation":[160],"an":[162],"arbitrarily":[163],"or":[166],"each":[170],"aspect.The":[171],"datasets":[172],"codes":[174],"publicly":[176],"available":[177],"generate":[179],"further":[180],"data":[182],"ulterior":[184],"languages.":[187]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4378765305","counts_by_year":[],"updated_date":"2025-04-16T05:32:07.746636","created_date":"2023-05-31"}