{"id":"https://openalex.org/W4378499090","doi":"https://doi.org/10.48550/arxiv.2305.15695","title":"Asking Before Action: Gather Information in Embodied Decision Making with Language Models","display_name":"Asking Before Action: Gather Information in Embodied Decision Making with Language Models","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4378499090","doi":"https://doi.org/10.48550/arxiv.2305.15695"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.15695","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.15695","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100386498","display_name":"Xiaoyu Chen","orcid":"https://orcid.org/0000-0003-0426-8920"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Xiaoyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111107989","display_name":"Shenao Zhang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Shenao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048462355","display_name":"Pushi Zhang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Pushi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032277491","display_name":"Zhao Li","orcid":"https://orcid.org/0000-0002-5056-0351"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Li","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100611366","display_name":"Jianyu Chen","orcid":"https://orcid.org/0000-0002-2354-0240"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Jianyu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.710701,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":85},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9883,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9883,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.9557,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.947,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/intuition","display_name":"Intuition","score":0.70604455},{"id":"https://openalex.org/keywords/embodied-agent","display_name":"Embodied agent","score":0.5127467},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.45177975}],"concepts":[{"id":"https://openalex.org/C100609095","wikidata":"https://www.wikidata.org/wiki/Q1335050","display_name":"Embodied cognition","level":2,"score":0.8133327},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7533841},{"id":"https://openalex.org/C132010649","wikidata":"https://www.wikidata.org/wiki/Q189222","display_name":"Intuition","level":2,"score":0.70604455},{"id":"https://openalex.org/C2780791683","wikidata":"https://www.wikidata.org/wiki/Q846785","display_name":"Action (physics)","level":2,"score":0.63225776},{"id":"https://openalex.org/C103683099","wikidata":"https://www.wikidata.org/wiki/Q5370102","display_name":"Embodied agent","level":3,"score":0.5127467},{"id":"https://openalex.org/C126388530","wikidata":"https://www.wikidata.org/wiki/Q1131737","display_name":"Imitation","level":2,"score":0.49025112},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.45177975},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42014855},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.41909832},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.33316904},{"id":"https://openalex.org/C188147891","wikidata":"https://www.wikidata.org/wiki/Q147638","display_name":"Cognitive science","level":1,"score":0.23487628},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.17367807},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.09467366},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.15695","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.15695","pdf_url":"http://arxiv.org/pdf/2305.15695","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.15695","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.15695","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.82}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388039923","https://openalex.org/W2802233780","https://openalex.org/W2145935766","https://openalex.org/W2136562935","https://openalex.org/W2096246921","https://openalex.org/W1601503673","https://openalex.org/W1596535966","https://openalex.org/W1592154258","https://openalex.org/W1527882169","https://openalex.org/W1487956045"],"abstract_inverted_index":{"With":[0],"strong":[1],"capabilities":[2],"of":[3,9,28,177],"reasoning":[4],"and":[5,80,126,132,154,187,190,204],"a":[6,92],"generic":[7],"understanding":[8],"the":[10,55,96,113,118,134,197],"world,":[11],"Large":[12],"Language":[13],"Models":[14],"(LLMs)":[15],"have":[16],"shown":[17],"great":[18],"potential":[19],"in":[20,45,58,112,139,160,193],"building":[21],"versatile":[22],"embodied":[23,149],"decision":[24,150],"making":[25,151],"agents":[26,42,167],"capable":[27],"performing":[29],"diverse":[30],"tasks.":[31],"However,":[32],"when":[33],"deployed":[34],"to":[35,51,76,98,122,216],"unfamiliar":[36,59,140],"environments,":[37],"we":[38,86],"show":[39],"that":[40,94,156,180,212],"LLM":[41,166],"face":[43],"challenges":[44],"efficiently":[46],"gathering":[47],"necessary":[48],"information,":[49],"leading":[50],"suboptimal":[52],"performance.":[53],"On":[54],"other":[56],"hand,":[57],"scenarios,":[60],"human":[61],"individuals":[62],"often":[63],"seek":[64],"additional":[65],"information":[66,105,192],"from":[67],"their":[68,110],"peers":[69],"before":[70],"taking":[71],"action,":[72],"leveraging":[73],"external":[74,101],"knowledge":[75],"avoid":[77],"unnecessary":[78],"trial":[79],"error.":[81],"Building":[82],"upon":[83],"this":[84,116],"intuition,":[85],"propose":[87],"\\textit{Asking":[88],"Before":[89],"Action}":[90],"(ABA),":[91],"method":[93,146,163],"empowers":[95],"agent":[97,119],"proactively":[99],"query":[100],"sources":[102],"for":[103,199],"pertinent":[104],"using":[106],"natural":[107],"language":[108],"during":[109],"interactions":[111],"environment.":[114],"In":[115],"way,":[117],"is":[120],"able":[121],"enhance":[123],"its":[124],"efficiency":[125],"performance":[127,209],"by":[128,168,181],"mitigating":[129,196],"wasteful":[130],"steps":[131],"circumventing":[133],"difficulties":[135],"associated":[136],"with":[137],"exploration":[138],"environments.":[141],"We":[142],"empirically":[143],"evaluate":[144],"our":[145,162],"on":[147,174,210],"an":[148],"benchmark,":[152],"ALFWorld,":[153],"demonstrate":[155],"despite":[157],"modest":[158],"modifications":[159],"prompts,":[161],"exceeds":[164],"baseline":[165],"more":[169],"than":[170],"$40$%.":[171],"Further":[172],"experiments":[173],"two":[175],"variants":[176],"ALFWorld":[178],"illustrate":[179],"imitation":[182],"learning,":[183],"ABA":[184],"effectively":[185],"retains":[186],"reuses":[188],"queried":[189],"known":[191],"subsequent":[194],"tasks,":[195],"need":[198],"repetitive":[200],"inquiries.":[201],"Both":[202],"qualitative":[203],"quantitative":[205],"results":[206],"exhibit":[207],"remarkable":[208],"tasks":[211],"previous":[213],"methods":[214],"struggle":[215],"solve.":[217]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4378499090","counts_by_year":[{"year":2024,"cited_by_count":3}],"updated_date":"2025-04-24T01:56:31.996752","created_date":"2023-05-27"}