{"id":"https://openalex.org/W4378471197","doi":"https://doi.org/10.48550/arxiv.2305.14606","title":"Taylor Learning","display_name":"Taylor Learning","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4378471197","doi":"https://doi.org/10.48550/arxiv.2305.14606"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.14606","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.14606","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5079416459","display_name":"James Schmidt","orcid":null},"institutions":[],"countries":[],"is_corresponding":true,"raw_author_name":"Schmidt, James","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":["https://openalex.org/A5079416459"],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9898,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/empirical-risk-minimization","display_name":"Empirical risk minimization","score":0.8314748},{"id":"https://openalex.org/keywords/minification","display_name":"Minification","score":0.6019064}],"concepts":[{"id":"https://openalex.org/C107321475","wikidata":"https://www.wikidata.org/wiki/Q5374254","display_name":"Empirical risk minimization","level":2,"score":0.8314748},{"id":"https://openalex.org/C153258448","wikidata":"https://www.wikidata.org/wiki/Q1199743","display_name":"Gradient descent","level":3,"score":0.71959364},{"id":"https://openalex.org/C147764199","wikidata":"https://www.wikidata.org/wiki/Q6865248","display_name":"Minification","level":2,"score":0.6019064},{"id":"https://openalex.org/C88548561","wikidata":"https://www.wikidata.org/wiki/Q347599","display_name":"sort","level":2,"score":0.5952681},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5656041},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.50385016},{"id":"https://openalex.org/C158946198","wikidata":"https://www.wikidata.org/wiki/Q131187","display_name":"Taylor series","level":2,"score":0.502429},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.44947287},{"id":"https://openalex.org/C52740198","wikidata":"https://www.wikidata.org/wiki/Q1539564","display_name":"Importance sampling","level":3,"score":0.43243715},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36318094},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.352466},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33528113},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.14884296},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.1396187},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.0},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.14606","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.14606","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.14606","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4255476312","https://openalex.org/W4250902763","https://openalex.org/W2972254340","https://openalex.org/W2952817981","https://openalex.org/W2808958252","https://openalex.org/W2373973507","https://openalex.org/W2361805396","https://openalex.org/W2351154965","https://openalex.org/W2022231341","https://openalex.org/W1805912688"],"abstract_inverted_index":{"Empirical":[0],"risk":[1,36,79],"minimization":[2],"stands":[3],"behind":[4],"most":[5],"optimization":[6],"in":[7,31,96],"supervised":[8],"machine":[9],"learning.":[10],"Under":[11],"this":[12,59],"scheme,":[13],"labeled":[14],"data":[15,101],"is":[16,49],"used":[17],"to":[18,66],"approximate":[19],"an":[20,34],"expected":[21,45],"cost":[22],"(risk),":[23],"and":[24,105],"a":[25,63,103,107],"learning":[26,64,109],"algorithm":[27,65],"updates":[28],"model-defining":[29],"parameters":[30],"search":[32],"of":[33,41,55,99],"empirical":[35,78],"minimizer,":[37],"with":[38],"the":[39,97],"aim":[40],"thereby":[42],"approximately":[43],"minimizing":[44],"cost.":[46],"Parameter":[47],"update":[48],"often":[50],"done":[51],"by":[52,87],"some":[53],"sort":[54],"gradient":[56,75],"descent.":[57],"In":[58],"paper,":[60],"we":[61,90],"introduce":[62],"construct":[67],"models":[68],"for":[69],"real":[70],"analytic":[71],"functions":[72,84],"using":[73],"neither":[74],"descent":[76],"nor":[77],"minimization.":[80],"Observing":[81],"that":[82],"such":[83],"are":[85],"defined":[86],"local":[88],"information,":[89],"situate":[91],"familiar":[92],"Taylor":[93],"approximation":[94],"methods":[95],"context":[98],"sampling":[100],"from":[102],"distribution,":[104],"prove":[106],"nonuniform":[108],"result.":[110]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4378471197","counts_by_year":[],"updated_date":"2025-01-01T19:57:25.491379","created_date":"2023-05-27"}