{"id":"https://openalex.org/W4378508560","doi":"https://doi.org/10.48550/arxiv.2305.14045","title":"The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning","display_name":"The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4378508560","doi":"https://doi.org/10.48550/arxiv.2305.14045"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.14045","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.14045","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5014381991","display_name":"Seungone Kim","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Seungone","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028638312","display_name":"Se June Joo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Joo, Se June","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100427652","display_name":"Doyoung Kim","orcid":"https://orcid.org/0000-0002-7112-820X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Doyoung","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017598734","display_name":"Joel Jang","orcid":"https://orcid.org/0000-0002-3749-2999"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jang, Joel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047377519","display_name":"Seonghyeon Ye","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ye, Seonghyeon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076515960","display_name":"Jamin Shin","orcid":"https://orcid.org/0000-0002-4604-7299"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shin, Jamin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5087565126","display_name":"Minjoon Seo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Seo, Minjoon","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.710701,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9408,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11636","display_name":"Artificial Intelligence in Healthcare and Education","score":0.9365,"subfield":{"id":"https://openalex.org/subfields/2718","display_name":"Health Informatics"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6178709}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7319904},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6178709},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.55800146},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36453807},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.14045","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.14045","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.14045","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.71,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4391375266","https://openalex.org/W4321353415","https://openalex.org/W2748952813","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Language":[0],"models":[1],"(LMs)":[2],"with":[3,35,43,74,91,135],"less":[4],"than":[5],"100B":[6],"parameters":[7],"are":[8,184],"known":[9],"to":[10,19,31,48,97,140],"perform":[11],"poorly":[12],"on":[13,102,146],"chain-of-thought":[14],"(CoT)":[15],"reasoning":[16,38],"in":[17,123,151],"contrast":[18],"large":[20],"LMs":[21,34,96,139],"when":[22],"solving":[23],"unseen":[24,103],"tasks.":[25,81,104],"In":[26,46],"this":[27,50],"work,":[28],"we":[29,52,110,130],"aim":[30],"equip":[32],"smaller":[33,95],"the":[36,60,65,106,168,177],"step-by-step":[37],"capability":[39],"by":[40,171],"instruction":[41,133],"tuning":[42,134],"CoT":[44,61,72,85,92,100,136,178],"rationales.":[45],"order":[47],"achieve":[49],"goal,":[51],"first":[53],"introduce":[54],"a":[55,172],"new":[56],"instruction-tuning":[57],"dataset":[58],"called":[59],"Collection,":[62],"which":[63],"augments":[64],"existing":[66],"Flan":[67],"Collection":[68,93,137,179],"(including":[69],"only":[70],"9":[71],"tasks)":[73],"additional":[75],"1.84":[76],"million":[77],"rationales":[78],"across":[79],"1,060":[80],"We":[82],"show":[83,131],"that":[84,132],"fine-tuning":[86],"Flan-T5":[87],"(3B":[88],"&":[89],"11B)":[90],"enables":[94],"have":[98],"better":[99],"capabilities":[101,145],"On":[105],"BIG-Bench-Hard":[107],"(BBH)":[108],"benchmark,":[109],"report":[111],"an":[112,152],"average":[113],"improvement":[114,153],"of":[115,125,154],"+4.34%":[116],"(Flan-T5":[117,121,156,160],"3B)":[118,157],"and":[119,158,181],"+2.60%":[120],"11B),":[122,161],"terms":[124],"zero-shot":[126],"task":[127],"accuracy.":[128],"Furthermore,":[129],"allows":[138],"possess":[141],"stronger":[142],"few-shot":[143],"learning":[144],"4":[147],"domain-specific":[148],"tasks,":[149],"resulting":[150],"+2.24%":[155],"+2.37%":[159],"even":[162],"outperforming":[163],"ChatGPT":[164],"utilizing":[165],"demonstrations":[166],"until":[167],"max":[169],"length":[170],"+13.98%":[173],"margin.":[174],"Our":[175],"code,":[176],"data,":[180],"model":[182],"checkpoints":[183],"publicly":[185],"available.":[186]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4378508560","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-27T20:49:31.420352","created_date":"2023-05-27"}