{"id":"https://openalex.org/W4377865924","doi":"https://doi.org/10.48550/arxiv.2305.13269","title":"Chain-of-Knowledge: Grounding Large Language Models via Dynamic Knowledge Adapting over Heterogeneous Sources","display_name":"Chain-of-Knowledge: Grounding Large Language Models via Dynamic Knowledge Adapting over Heterogeneous Sources","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4377865924","doi":"https://doi.org/10.48550/arxiv.2305.13269"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13269","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.13269","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5039460454","display_name":"Xingxuan Li","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Xingxuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006069607","display_name":"R. P. Zhao","orcid":"https://orcid.org/0009-0005-6258-0228"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Ruochen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087486426","display_name":"Yew Ken Chia","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chia, Yew Ken","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015941893","display_name":"Bosheng Ding","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ding, Bosheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086674741","display_name":"Lidong Bing","orcid":"https://orcid.org/0000-0003-4565-6313"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bing, Lidong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005443526","display_name":"Shafiq Joty","orcid":"https://orcid.org/0000-0002-9222-2641"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Joty, Shafiq","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5033376109","display_name":"Soujanya Poria","orcid":"https://orcid.org/0000-0001-6924-7931"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Poria, Soujanya","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.91949,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9744,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/unstructured-data","display_name":"Unstructured data","score":0.41882667}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7637724},{"id":"https://openalex.org/C2781252014","wikidata":"https://www.wikidata.org/wiki/Q1141900","display_name":"Unstructured data","level":3,"score":0.41882667},{"id":"https://openalex.org/C44291984","wikidata":"https://www.wikidata.org/wiki/Q1074173","display_name":"Question answering","level":2,"score":0.41458172},{"id":"https://openalex.org/C207685749","wikidata":"https://www.wikidata.org/wiki/Q2088941","display_name":"Domain knowledge","level":2,"score":0.4131659},{"id":"https://openalex.org/C120567893","wikidata":"https://www.wikidata.org/wiki/Q1582085","display_name":"Knowledge extraction","level":2,"score":0.41067734},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36766773},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.3628627},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.3453105},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.123877674},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.11892936}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13269","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.13269","pdf_url":"http://arxiv.org/pdf/2305.13269","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.13269","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13269","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.83,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4243448361","https://openalex.org/W4239551281","https://openalex.org/W4234690372","https://openalex.org/W2357854711","https://openalex.org/W2111524952","https://openalex.org/W2103484298","https://openalex.org/W2054759342","https://openalex.org/W2051700896","https://openalex.org/W2019158987","https://openalex.org/W1552255772"],"abstract_inverted_index":{"We":[0],"present":[1],"chain-of-knowledge":[2],"(CoK),":[3],"a":[4,47,96],"novel":[5],"framework":[6],"that":[7,107,123,149,192],"augments":[8],"large":[9],"language":[10],"models":[11],"(LLMs)":[12],"by":[13,80,82],"dynamically":[14],"incorporating":[15],"grounding":[16],"information":[17],"from":[18,73,85],"heterogeneous":[19],"sources.":[20],"It":[21],"results":[22],"in":[23,30,137],"more":[24,125],"factual":[25,127],"rationales":[26,55,78,91,177,182],"and":[27,43,56,121,133,164,185],"reduced":[28],"hallucination":[29],"generation.":[31],"Specifically,":[32],"CoK":[33,50,75,112,174,193],"consists":[34],"of":[35,153,158,198],"three":[36],"stages:":[37],"reasoning":[38],"preparation,":[39],"dynamic":[40,139],"knowledge":[41,62,84,116,135,140],"adapting,":[42],"answer":[44,102],"consolidation.":[45,103],"Given":[46],"knowledge-intensive":[48,201],"question,":[49],"first":[51],"prepares":[52],"several":[53],"preliminary":[54],"answers":[57,72],"while":[58],"identifying":[59],"the":[60,71,77,86,100,138,151,176,196],"relevant":[61],"domains.":[63,88,205],"If":[64],"there":[65],"is":[66],"no":[67],"majority":[68],"consensus":[69],"among":[70],"samples,":[74],"corrects":[76,175],"step":[79,81],"adapting":[83,141],"identified":[87],"These":[89],"corrected":[90,181],"can":[92],"plausibly":[93],"serve":[94],"as":[95,119],"better":[97],"foundation":[98],"for":[99,155],"final":[101],"Unlike":[104],"prior":[105],"studies":[106],"primarily":[108],"use":[109],"unstructured":[110,132],"data,":[111],"also":[113],"leverages":[114],"structured":[115,134],"sources":[117,136],"such":[118],"Wikidata":[120],"tables":[122],"provide":[124],"reliable":[126],"information.":[128],"To":[129],"access":[130],"both":[131],"stage,":[142],"we":[143],"propose":[144],"an":[145],"adaptive":[146],"query":[147,159],"generator":[148],"allows":[150],"generation":[152],"queries":[154],"various":[156],"types":[157],"languages,":[160],"including":[161],"SPARQL,":[162],"SQL,":[163],"natural":[165],"sentences.":[166],"Moreover,":[167],"to":[168,183],"minimize":[169],"error":[170],"propagation":[171],"between":[172],"rationales,":[173],"progressively":[178],"using":[179],"preceding":[180],"generate":[184],"correct":[186],"subsequent":[187],"rationales.":[188],"Extensive":[189],"experiments":[190],"show":[191],"consistently":[194],"improves":[195],"performance":[197],"LLMs":[199],"on":[200],"tasks":[202],"across":[203],"different":[204]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4377865924","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":2}],"updated_date":"2025-01-16T18:26:43.358874","created_date":"2023-05-24"}