{"id":"https://openalex.org/W4377865285","doi":"https://doi.org/10.48550/arxiv.2305.13195","title":"U-DiT TTS: U-Diffusion Vision Transformer for Text-to-Speech","display_name":"U-DiT TTS: U-Diffusion Vision Transformer for Text-to-Speech","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4377865285","doi":"https://doi.org/10.48550/arxiv.2305.13195"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13195","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.13195","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101414146","display_name":"Xin Jing","orcid":"https://orcid.org/0000-0002-3425-3968"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jing, Xin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112503665","display_name":"Yi Chang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chang, Yi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087186760","display_name":"Zijiang Yang","orcid":"https://orcid.org/0000-0001-6469-5217"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Zijiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002497635","display_name":"Jiangjian Xie","orcid":"https://orcid.org/0000-0003-1367-324X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie, Jiangjian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012240826","display_name":"Andreas Triantafyllopoulos","orcid":"https://orcid.org/0000-0001-8338-617X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Triantafyllopoulos, Andreas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5043060302","display_name":"Bj\u00f6rn Sch\u00fcller","orcid":"https://orcid.org/0000-0002-6478-8699"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Schuller, Bjoern W.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9884,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.98,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/spectrogram","display_name":"Spectrogram","score":0.55844694}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73139876},{"id":"https://openalex.org/C14999030","wikidata":"https://www.wikidata.org/wiki/Q16346","display_name":"Speech synthesis","level":2,"score":0.67752254},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.64232624},{"id":"https://openalex.org/C45273575","wikidata":"https://www.wikidata.org/wiki/Q578970","display_name":"Spectrogram","level":2,"score":0.55844694},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.5368007},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5261837},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.5044397},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.48384514},{"id":"https://openalex.org/C101468663","wikidata":"https://www.wikidata.org/wiki/Q1620158","display_name":"Modular design","level":2,"score":0.48092768},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.44826117},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.33221182},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08498487},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.07184887},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13195","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.13195","pdf_url":"http://arxiv.org/pdf/2305.13195","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.13195","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13195","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.52}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4375868962","https://openalex.org/W3179495260","https://openalex.org/W3127543252","https://openalex.org/W2998781440","https://openalex.org/W2942893872","https://openalex.org/W2530685530","https://openalex.org/W2088854863","https://openalex.org/W2065606036","https://openalex.org/W2011227383","https://openalex.org/W1976719989"],"abstract_inverted_index":{"Deep":[0],"learning":[1],"has":[2,26],"led":[3],"to":[4,30,33],"considerable":[5],"advances":[6],"in":[7,39,73,98],"text-to-speech":[8],"synthesis.":[9],"Most":[10],"recently,":[11],"the":[12,46,56,70,80,84,91,95,106,111,145,164],"adoption":[13],"of":[14,86,94,105,114],"Score-based":[15],"Generative":[16],"Models":[17,24],"(SGMs),":[18],"also":[19],"known":[20],"as":[21,55,90,144],"Diffusion":[22],"Probabilistic":[23],"(DPMs),":[25],"gained":[27],"traction":[28],"due":[29],"their":[31],"ability":[32],"produce":[34],"high-quality":[35],"synthesized":[36],"neural":[37,40,71],"speech":[38,41],"synthesis":[42],"systems.":[43],"In":[44,63],"SGMs,":[45],"U-Net":[47,115],"architecture":[48,89],"and":[49,78,116,122,139,152],"its":[50,59],"variants":[51],"have":[52],"long":[53],"dominated":[54],"backbone":[57],"since":[58],"first":[60],"successful":[61],"adoption.":[62],"this":[64],"research,":[65],"we":[66],"mainly":[67],"focus":[68],"on":[69,163],"network":[72],"diffusion-model-based":[74],"Text-to-Speech":[75],"(TTS)":[76],"systems":[77],"propose":[79],"U-DiT":[81,107,130],"architecture,":[82,108],"exploring":[83],"potential":[85],"vision":[87],"transformer":[88],"core":[92],"component":[93],"diffusion":[96],"models":[97],"a":[99,134,141],"TTS":[100,131],"system.":[101],"The":[102,128,147],"modular":[103],"design":[104],"inherited":[109],"from":[110],"best":[112],"parts":[113],"ViT,":[117],"allows":[118],"for":[119],"great":[120],"scalability":[121],"versatility":[123],"across":[124],"different":[125],"data":[126],"scales.":[127],"proposed":[129],"system":[132,159],"is":[133],"mel":[135],"spectrogram-based":[136],"acoustic":[137],"model":[138],"utilizes":[140],"pretrained":[142],"HiFi-GAN":[143],"vocoder.":[146],"objective":[148],"(ie":[149],"Frechet":[150],"distance)":[151],"MOS":[153],"results":[154],"show":[155],"that":[156],"our":[157],"DiT-TTS":[158],"achieves":[160],"state-of-art":[161],"performance":[162],"single":[165],"speaker":[166],"dataset":[167],"LJSpeech.":[168],"Our":[169],"demos":[170],"are":[171],"publicly":[172],"available":[173],"at:":[174],"https://eihw.github.io/u-dit-tts/":[175]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4377865285","counts_by_year":[],"updated_date":"2025-01-04T16:41:45.736209","created_date":"2023-05-24"}