{"id":"https://openalex.org/W4377865077","doi":"https://doi.org/10.48550/arxiv.2305.13063","title":"Hierarchical Partitioning Forecaster","display_name":"Hierarchical Partitioning Forecaster","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4377865077","doi":"https://doi.org/10.48550/arxiv.2305.13063"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13063","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.13063","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088656569","display_name":"Christopher Mattern","orcid":null},"institutions":[],"countries":[],"is_corresponding":true,"raw_author_name":"Mattern, Christopher","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":["https://openalex.org/A5088656569"],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9874,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9874,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9746,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9735,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.4592651},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.42537513}],"concepts":[{"id":"https://openalex.org/C50817715","wikidata":"https://www.wikidata.org/wiki/Q79895177","display_name":"Regret","level":2,"score":0.84963226},{"id":"https://openalex.org/C42812","wikidata":"https://www.wikidata.org/wiki/Q1082910","display_name":"Partition (number theory)","level":2,"score":0.6944312},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.583555},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.47907266},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.47412562},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.4592651},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.42537513},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3847636},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3709724},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.29283145},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.27926496},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.20346415},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13063","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.13063","pdf_url":"http://arxiv.org/pdf/2305.13063","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.13063","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13063","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4376155396","https://openalex.org/W4311589891","https://openalex.org/W3123835761","https://openalex.org/W2971351794","https://openalex.org/W2527791220","https://openalex.org/W2174986909","https://openalex.org/W2155070487","https://openalex.org/W2101991911","https://openalex.org/W1947085858","https://openalex.org/W118270247"],"abstract_inverted_index":{"In":[0],"this":[1],"work":[2],"we":[3,133,170,193],"consider":[4],"a":[5,28,106,112,122,138,156,184],"new":[6],"family":[7],"of":[8,130,149,178,186,204],"algorithms":[9],"for":[10,176,188],"sequential":[11],"prediction,":[12],"Hierarchical":[13],"Partitioning":[14,89],"Forecasters":[15,90],"(HPFs).":[16],"Our":[17,213],"goal":[18],"is":[19,183,218],"to":[20,39,63,74,83,199],"provide":[21,134,194],"appealing":[22],"theoretical":[23],"-":[24,32,35,42],"regret":[25,85,148,175],"guarantees":[26],"on":[27],"powerful":[29],"model":[30],"class":[31],"and":[33,66,103,117,166],"practical":[34],"empirical":[36],"performance":[37],"comparable":[38],"deep":[40,207],"networks":[41],"properties":[43],"at":[44],"the":[45,55,98,151,189,205],"same":[46],"time.":[47],"We":[48],"built":[49],"upon":[50],"three":[51],"principles:":[52],"hierarchically":[53],"partitioning":[54],"feature":[56,99],"space":[57,100],"into":[58,101],"sub-spaces,":[59],"blending":[60],"forecasters":[61,164],"specialized":[62],"each":[64],"sub-space":[65],"learning":[67,72,146,150,208],"HPFs":[68],"via":[69],"local":[70,144],"online":[71,145],"applied":[73],"these":[75,79],"individual":[76],"forecasters.":[77],"Following":[78],"principles":[80],"allows":[81],"us":[82],"obtain":[84,171],"guarantees,":[86],"where":[87,169,181],"Constant":[88],"(CPFs)":[91],"serve":[92],"as":[93],"competitor.":[94],"A":[95],"CPF":[96,120],"partitions":[97],"sub-spaces":[102],"predicts":[104],"with":[105,121,162],"fixed":[107],"forecaster":[108],"per":[109],"sub-space.":[110],"Fixing":[111],"hierarchical":[113],"partition":[114,123],"$\\mathcal":[115,131],"H$":[116,132],"considering":[118],"any":[119],"that":[124,141,159,196,216],"can":[125],"be":[126],"constructed":[127],"using":[128],"elements":[129],"two":[135],"guarantees:":[136],"first,":[137],"generic":[139],"one":[140],"unveils":[142],"how":[143],"determines":[147],"entire":[152],"HPF":[153,161],"online;":[154],"second,":[155],"concrete":[157],"instance":[158],"considers":[160],"linear":[163],"(LHPF)":[165],"exp-concave":[167],"losses":[168],"$O(k":[172],"\\log":[173],"T)$":[174],"sequences":[177],"length":[179],"$T$":[180],"$k$":[182],"measure":[185],"complexity":[187],"competing":[190],"CPF.":[191],"Finally,":[192],"experiments":[195],"compare":[197],"LHPF":[198,217],"various":[200,221],"baselines,":[201],"including":[202],"state":[203],"art":[206],"models,":[209],"in":[210,220],"precipitation":[211],"nowcasting.":[212],"results":[214],"indicate":[215],"competitive":[219],"settings.":[222]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4377865077","counts_by_year":[],"updated_date":"2025-01-04T17:34:22.620325","created_date":"2023-05-24"}