{"id":"https://openalex.org/W4377130591","doi":"https://doi.org/10.48550/arxiv.2305.10544","title":"Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks","display_name":"Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4377130591","doi":"https://doi.org/10.48550/arxiv.2305.10544"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.10544","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.10544","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5084297425","display_name":"Federico Errica","orcid":"https://orcid.org/0000-0001-5181-2904"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Errica, Federico","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5031719069","display_name":"Mathias Niepert","orcid":"https://orcid.org/0000-0002-8401-3751"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Niepert, Mathias","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9833,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9494,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/complement","display_name":"Complement","score":0.5441036},{"id":"https://openalex.org/keywords/graphical-model","display_name":"Graphical model","score":0.44778758}],"concepts":[{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.7599603},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63475406},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.5783489},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.57500243},{"id":"https://openalex.org/C112313634","wikidata":"https://www.wikidata.org/wiki/Q7886648","display_name":"Complement (music)","level":5,"score":0.5441036},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.4831883},{"id":"https://openalex.org/C155846161","wikidata":"https://www.wikidata.org/wiki/Q1143367","display_name":"Graphical model","level":2,"score":0.44778758},{"id":"https://openalex.org/C90673727","wikidata":"https://www.wikidata.org/wiki/Q901718","display_name":"Product (mathematics)","level":2,"score":0.44169113},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39248055},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.294764},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.20629382},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C188082640","wikidata":"https://www.wikidata.org/wiki/Q1780899","display_name":"Complementation","level":4,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C127716648","wikidata":"https://www.wikidata.org/wiki/Q104053","display_name":"Phenotype","level":3,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.10544","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.10544","pdf_url":"http://arxiv.org/pdf/2305.10544","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.10544","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.10544","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4368755698","https://openalex.org/W4297589944","https://openalex.org/W4286900141","https://openalex.org/W3036520466","https://openalex.org/W2964129930","https://openalex.org/W2417308975","https://openalex.org/W2382566571","https://openalex.org/W2366686860","https://openalex.org/W2349321798","https://openalex.org/W2109986081"],"abstract_inverted_index":{"We":[0,91,113],"introduce":[1],"Graph-Induced":[2],"Sum-Product":[3],"Networks":[4],"(GSPNs),":[5],"a":[6,46,88],"new":[7],"probabilistic":[8,18,89,128],"framework":[9],"for":[10,104],"graph":[11,81,105],"representation":[12],"learning":[13],"that":[14],"can":[15],"tractably":[16],"answer":[17,127],"queries.":[19,129],"Inspired":[20],"by":[21,26],"the":[22,29,43,53,67,75,84,93,115,123],"computational":[23],"trees":[24],"induced":[25],"vertices":[27],"in":[28,107],"context":[30],"of":[31,38,45,52,57,71,79,87],"message-passing":[32],"neural":[33,111],"networks,":[34],"we":[35,73],"build":[36],"hierarchies":[37],"sum-product":[39],"networks":[40,82],"(SPNs)":[41],"where":[42],"parameters":[44],"parent":[47],"SPN":[48],"are":[49],"learnable":[50],"transformations":[51],"a-posterior":[54],"mixing":[55],"probabilities":[56],"its":[58],"children's":[59],"sum":[60],"units.":[61],"Due":[62],"to":[63,109,126],"weight":[64],"sharing":[65],"and":[66,77,103,122],"tree-shaped":[68],"computation":[69],"graphs":[70],"GSPNs,":[72],"obtain":[74],"efficiency":[76],"efficacy":[78],"deep":[80],"with":[83,117],"additional":[85],"advantages":[86],"model.":[90],"show":[92],"model's":[94,124],"competitiveness":[95],"on":[96,120],"scarce":[97],"supervision":[98],"scenarios,":[99],"under":[100],"missing":[101],"data,":[102],"classification":[106],"comparison":[108],"popular":[110],"models.":[112],"complement":[114],"experiments":[116],"qualitative":[118],"analyses":[119],"hyper-parameters":[121],"ability":[125]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4377130591","counts_by_year":[],"updated_date":"2025-04-16T05:31:40.594543","created_date":"2023-05-21"}