{"id":"https://openalex.org/W4377121344","doi":"https://doi.org/10.48550/arxiv.2305.10306","title":"UniEX: An Effective and Efficient Framework for Unified Information Extraction via a Span-extractive Perspective","display_name":"UniEX: An Effective and Efficient Framework for Unified Information Extraction via a Span-extractive Perspective","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4377121344","doi":"https://doi.org/10.48550/arxiv.2305.10306"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.10306","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.10306","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102402775","display_name":"Junyu Lu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Junyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086376470","display_name":"Ping Yang","orcid":"https://orcid.org/0000-0002-8588-847X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Ping","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108691724","display_name":"Ruyi Gan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gan, Ruyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100395785","display_name":"Junjie Wang","orcid":"https://orcid.org/0000-0001-9869-7085"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Junjie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101769560","display_name":"Yuxiang Zhang","orcid":"https://orcid.org/0000-0001-5228-3215"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Yuxiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100628332","display_name":"Jiaxing Zhang","orcid":"https://orcid.org/0000-0002-0178-7007"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Jiaxing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5048283341","display_name":"Pingjian Zhang","orcid":"https://orcid.org/0000-0002-9087-4494"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Pingjian","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/relationship-extraction","display_name":"Relationship extraction","score":0.6361752},{"id":"https://openalex.org/keywords/schema","display_name":"Schema (genetic algorithms)","score":0.5770823},{"id":"https://openalex.org/keywords/encode","display_name":"ENCODE","score":0.48862535}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8193018},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.68711746},{"id":"https://openalex.org/C153604712","wikidata":"https://www.wikidata.org/wiki/Q7310755","display_name":"Relationship extraction","level":3,"score":0.6361752},{"id":"https://openalex.org/C195807954","wikidata":"https://www.wikidata.org/wiki/Q1662562","display_name":"Information extraction","level":2,"score":0.60365397},{"id":"https://openalex.org/C52146309","wikidata":"https://www.wikidata.org/wiki/Q7431116","display_name":"Schema (genetic algorithms)","level":2,"score":0.5770823},{"id":"https://openalex.org/C66746571","wikidata":"https://www.wikidata.org/wiki/Q1134833","display_name":"ENCODE","level":3,"score":0.48862535},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.4542991},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45358658},{"id":"https://openalex.org/C44291984","wikidata":"https://www.wikidata.org/wiki/Q1074173","display_name":"Question answering","level":2,"score":0.45065236},{"id":"https://openalex.org/C48145219","wikidata":"https://www.wikidata.org/wiki/Q1335365","display_name":"Security token","level":2,"score":0.41223437},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39711663},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38235676},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.3587108},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.33009678},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.10306","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.10306","pdf_url":"http://arxiv.org/pdf/2305.10306","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.10306","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.10306","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W842810586","https://openalex.org/W4319940250","https://openalex.org/W4236762297","https://openalex.org/W3138801416","https://openalex.org/W2594363579","https://openalex.org/W2369351710","https://openalex.org/W2352298027","https://openalex.org/W2169232658","https://openalex.org/W2092919065","https://openalex.org/W1984061923"],"abstract_inverted_index":{"We":[0,92],"propose":[1],"a":[2,20,63,94,114],"new":[3],"paradigm":[4],"for":[5],"universal":[6,125],"information":[7,86],"extraction":[8,33,52,111],"(IE)":[9],"that":[10,120],"is":[11],"compatible":[12],"with":[13,62,139],"any":[14],"schema":[15],"format":[16],"and":[17,34,59,75,78,105,108,132,153],"applicable":[18],"to":[19,98],"list":[21],"of":[22,130,155],"IE":[23,42,126,137],"tasks,":[24,103],"such":[25],"as":[26,44],"named":[27],"entity":[28],"recognition,":[29],"relation":[30],"extraction,":[31],"event":[32],"sentiment":[35],"analysis.":[36],"Our":[37],"approach":[38],"converts":[39],"the":[40,45,81,88,110,140,151],"text-based":[41],"tasks":[43],"token-pair":[46],"problem,":[47],"which":[48],"uniformly":[49],"disassembles":[50],"all":[51],"targets":[53],"into":[54],"joint":[55],"span":[56],"detection,":[57],"classification":[58],"association":[60],"problems":[61],"unified":[64],"extractive":[65],"framework,":[66],"namely":[67],"UniEX.":[68,156],"UniEX":[69,121],"can":[70,122],"synchronously":[71],"encode":[72],"schema-based":[73],"prompt":[74],"textual":[76],"information,":[77],"collaboratively":[79],"learn":[80],"generalized":[82],"knowledge":[83],"from":[84],"pre-defined":[85],"using":[87],"auto-encoder":[89],"language":[90],"models.":[91],"develop":[93],"traffine":[95],"attention":[96],"mechanism":[97],"integrate":[99],"heterogeneous":[100],"factors":[101],"including":[102],"labels":[104],"inside":[106],"tokens,":[107],"obtain":[109],"target":[112],"via":[113],"scoring":[115],"matrix.":[116],"Experiment":[117],"results":[118],"show":[119],"outperform":[123],"generative":[124],"models":[127],"in":[128,146],"terms":[129],"performance":[131,145],"inference-speed":[133],"on":[134],"$14$":[135],"benchmarks":[136],"datasets":[138],"supervised":[141],"setting.":[142],"The":[143],"state-of-the-art":[144],"low-resource":[147],"scenarios":[148],"also":[149],"verifies":[150],"transferability":[152],"effectiveness":[154]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4377121344","counts_by_year":[],"updated_date":"2025-02-20T11:54:46.788410","created_date":"2023-05-20"}