{"id":"https://openalex.org/W4376654493","doi":"https://doi.org/10.48550/arxiv.2305.08807","title":"Smoothness and monotonicity constraints for neural networks using ICEnet","display_name":"Smoothness and monotonicity constraints for neural networks using ICEnet","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4376654493","doi":"https://doi.org/10.48550/arxiv.2305.08807"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.08807","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.08807","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048936137","display_name":"Ronald Richman","orcid":"https://orcid.org/0000-0002-0441-8354"},"institutions":[{"id":"https://openalex.org/I192619145","display_name":"University of the Witwatersrand","ror":"https://ror.org/03rp50x72","country_code":"ZA","type":"education","lineage":["https://openalex.org/I192619145"]}],"countries":["ZA"],"is_corresponding":false,"raw_author_name":"Ronald Richman","raw_affiliation_strings":["Old Mutual Insure and University of the Witwatersrand, Johannesburg, South Africa; ronaldrich"],"affiliations":[{"raw_affiliation_string":"Old Mutual Insure and University of the Witwatersrand, Johannesburg, South Africa; ronaldrich","institution_ids":["https://openalex.org/I192619145"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5004533209","display_name":"Mario V. W\u00fcthrich","orcid":"https://orcid.org/0000-0003-4035-552X"},"institutions":[{"id":"https://openalex.org/I35440088","display_name":"ETH Zurich","ror":"https://ror.org/05a28rw58","country_code":"CH","type":"education","lineage":["https://openalex.org/I2799323385","https://openalex.org/I35440088"]}],"countries":["CH"],"is_corresponding":true,"raw_author_name":"Mario W\u00fcthrich","raw_affiliation_strings":["RiskLab, Department of Mathematics, ETH Zurich, Switzerland;"],"affiliations":[{"raw_affiliation_string":"RiskLab, Department of Mathematics, ETH Zurich, Switzerland;","institution_ids":["https://openalex.org/I35440088"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5004533209"],"corresponding_institution_ids":["https://openalex.org/I35440088"],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9877,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9877,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.987,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9869,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.9530346},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.6212259},{"id":"https://openalex.org/keywords/smoothness","display_name":"Smoothness","score":0.6208715}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.9530346},{"id":"https://openalex.org/C72169020","wikidata":"https://www.wikidata.org/wiki/Q194404","display_name":"Monotonic function","level":2,"score":0.7479433},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.71974194},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.6212259},{"id":"https://openalex.org/C102634674","wikidata":"https://www.wikidata.org/wiki/Q868473","display_name":"Smoothness","level":2,"score":0.6208715},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6141884},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5134905},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47746778},{"id":"https://openalex.org/C41587187","wikidata":"https://www.wikidata.org/wiki/Q1501882","display_name":"Generalized linear model","level":2,"score":0.4520795},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.37850082},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.36699575},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17223382},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.08807","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.08807","pdf_url":"http://arxiv.org/pdf/2305.08807","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.08807","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.08807","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.47}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1678356000","https://openalex.org/W1821462560","https://openalex.org/W1990010384","https://openalex.org/W2125406789","https://openalex.org/W2125847307","https://openalex.org/W2135046866","https://openalex.org/W2140514146","https://openalex.org/W2295598076","https://openalex.org/W2322425072","https://openalex.org/W2464785945","https://openalex.org/W2564702731","https://openalex.org/W2751607718","https://openalex.org/W2895600735","https://openalex.org/W2952231265","https://openalex.org/W3081478208","https://openalex.org/W3205653380","https://openalex.org/W4247767341","https://openalex.org/W4281651175","https://openalex.org/W4309645569","https://openalex.org/W4385245566","https://openalex.org/W4385982646"],"related_works":["https://openalex.org/W4404915278","https://openalex.org/W4396882122","https://openalex.org/W4319993887","https://openalex.org/W4297789176","https://openalex.org/W3178016723","https://openalex.org/W2998594699","https://openalex.org/W2968060152","https://openalex.org/W2963249138","https://openalex.org/W2768346313","https://openalex.org/W2550022009"],"abstract_inverted_index":{"Deep":[0],"neural":[1,72,87,116],"networks":[2,73,88],"have":[3,74],"become":[4],"an":[5],"important":[6],"tool":[7],"for":[8,83,98,111],"use":[9],"in":[10,18,46,89],"actuarial":[11],"tasks,":[12],"due":[13,30],"to":[14,25,31,38,53,57,66,142,150],"the":[15,32,39,84,144,151],"significant":[16],"gains":[17],"accuracy":[19],"provided":[20],"by":[21],"these":[22,36,96,123],"techniques":[23],"compared":[24],"traditional":[26],"methods,":[27],"but":[28],"also":[29],"close":[33,145],"connection":[34],"of":[35,86,147],"models":[37,124],"Generalized":[40],"Linear":[41],"Models":[42],"(GLMs)":[43],"currently":[44],"used":[45],"industry.":[47],"Whereas":[48],"constraining":[49],"GLM":[50],"parameters":[51],"relating":[52],"insurance":[54,90],"risk":[55],"factors":[56],"be":[58,126],"smooth":[59],"or":[60,100],"exhibit":[61],"monotonicity":[62],"is":[63,80],"trivial,":[64],"methods":[65],"incorporate":[67],"such":[68],"constraints":[69,97,113],"into":[70],"deep":[71,115],"not":[75],"yet":[76],"been":[77],"developed.":[78],"This":[79],"a":[81,108],"barrier":[82],"adoption":[85],"practice":[91],"since":[92],"actuaries":[93],"often":[94],"impose":[95],"commercial":[99],"statistical":[101],"reasons.":[102],"In":[103],"this":[104],"work,":[105],"we":[106,120,129],"present":[107],"novel":[109],"method":[110,140],"enforcing":[112],"within":[114],"network":[117],"models,":[118],"and":[119],"show":[121],"how":[122],"can":[125],"trained.":[127],"Moreover,":[128],"provide":[130],"example":[131],"applications":[132],"using":[133],"real-world":[134],"datasets.":[135],"We":[136],"call":[137],"our":[138,148],"proposed":[139],"ICEnet":[141],"emphasize":[143],"link":[146],"proposal":[149],"individual":[152],"conditional":[153],"expectation":[154],"(ICE)":[155],"model":[156],"interpretability":[157],"technique.":[158]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4376654493","counts_by_year":[],"updated_date":"2025-01-05T07:03:07.978465","created_date":"2023-05-17"}