{"id":"https://openalex.org/W4376653428","doi":"https://doi.org/10.48550/arxiv.2305.08013","title":"Information Bottleneck Analysis of Deep Neural Networks via Lossy Compression","display_name":"Information Bottleneck Analysis of Deep Neural Networks via Lossy Compression","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4376653428","doi":"https://doi.org/10.48550/arxiv.2305.08013"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.08013","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.08013","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5080506719","display_name":"Ivan Butakov","orcid":"https://orcid.org/0000-0002-0424-6695"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Butakov, Ivan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076939794","display_name":"A. D. Tolmachev","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tolmachev, Aleksander","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061781500","display_name":"Sofia Malanchuk","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Malanchuk, Sofia","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065064789","display_name":"A. M. Neopryatnaya","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Neopryatnaya, Anna","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008712753","display_name":"Alexey Frolov","orcid":"https://orcid.org/0000-0002-6734-0179"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Frolov, Alexey","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5090907794","display_name":"\u041a. \u0410\u043d\u0434\u0440\u0435\u0435\u0432","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Andreev, Kirill","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/information-bottleneck-method","display_name":"Information bottleneck method","score":0.8876508},{"id":"https://openalex.org/keywords/lossy-compression","display_name":"Lossy compression","score":0.66375005}],"concepts":[{"id":"https://openalex.org/C60008888","wikidata":"https://www.wikidata.org/wiki/Q6031013","display_name":"Information bottleneck method","level":3,"score":0.8876508},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7463165},{"id":"https://openalex.org/C165021410","wikidata":"https://www.wikidata.org/wiki/Q55564","display_name":"Lossy compression","level":2,"score":0.66375005},{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.59874576},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.5661923},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.56015277},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.5490147},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5435164},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.5120452},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.48166168},{"id":"https://openalex.org/C180016635","wikidata":"https://www.wikidata.org/wiki/Q2712821","display_name":"Compression (physics)","level":2,"score":0.44590417},{"id":"https://openalex.org/C152139883","wikidata":"https://www.wikidata.org/wiki/Q252973","display_name":"Mutual information","level":2,"score":0.4272756},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3908075},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37479472},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3253759},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15947631},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.08013","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.08013","pdf_url":"http://arxiv.org/pdf/2305.08013","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.08013","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.08013","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4301016710","https://openalex.org/W4295728955","https://openalex.org/W4287238667","https://openalex.org/W3149287595","https://openalex.org/W3089381707","https://openalex.org/W3034190530","https://openalex.org/W2783047733","https://openalex.org/W2741297526","https://openalex.org/W2622284819","https://openalex.org/W1504394672"],"abstract_inverted_index":{"The":[0,74,178],"Information":[1],"Bottleneck":[2],"(IB)":[3],"principle":[4],"offers":[5],"an":[6],"information-theoretic":[7],"framework":[8,129],"for":[9,81,107,130],"analyzing":[10],"the":[11,24,34,38,42,45,49,54,63,82,91,140,157,168,171,192,219],"training":[12,64],"process":[13,65],"of":[14,26,67,94,113,134,174,194,218],"deep":[15],"neural":[16],"networks":[17],"(DNNs).":[18],"Its":[19],"essence":[20],"lies":[21],"in":[22],"tracking":[23],"dynamics":[25],"two":[27,68],"mutual":[28],"information":[29],"(MI)":[30],"values:":[31],"one":[32],"between":[33,44,97,170],"hidden":[35,46],"layer":[36,47],"and":[37,41,48,60,72,119,150,186],"class":[39],"label,":[40],"other":[43,164],"DNN":[50],"input.":[51],"According":[52],"to":[53,79,90,155],"hypothesis":[55,102],"put":[56],"forth":[57],"by":[58,87,145,183],"Shwartz-Ziv":[59],"Tishby":[61],"(2017),":[62],"consists":[66],"distinct":[69],"phases:":[70],"fitting":[71],"compression.":[73],"latter":[75],"phase":[76],"is":[77,181],"believed":[78],"account":[80],"good":[83],"generalization":[84],"performance":[85],"exhibited":[86],"DNNs.":[88],"Due":[89],"challenging":[92],"nature":[93],"estimating":[95],"MI":[96,169,202,220],"high-dimensional":[98,175],"random":[99,176],"vectors,":[100],"this":[101,123],"has":[103],"only":[104],"been":[105],"verified":[106],"toy":[108],"NNs":[109,118],"or":[110],"specific":[111],"types":[112],"NNs,":[114],"such":[115],"as":[116],"quantized":[117],"dropout":[120],"NNs.":[121,136],"In":[122,163],"paper,":[124],"we":[125,166,190,205],"introduce":[126],"a":[127,152,210],"comprehensive":[128],"conducting":[131],"IB":[132,207],"analysis":[133,208],"general":[135],"Our":[137],"approach":[138],"leverages":[139],"stochastic":[141],"NN":[142],"method":[143,180],"proposed":[144,179],"Goldfeld":[146],"et":[147],"al.":[148],"(2019)":[149],"incorporates":[151],"compression":[153],"step":[154],"overcome":[156],"obstacles":[158],"associated":[159],"with":[160],"high":[161],"dimensionality.":[162],"words,":[165],"estimate":[167],"compressed":[172],"representations":[173],"vectors.":[177],"supported":[182],"both":[184],"theoretical":[185],"practical":[187],"justifications.":[188],"Notably,":[189],"demonstrate":[191],"accuracy":[193],"our":[195],"estimator":[196],"through":[197],"synthetic":[198],"experiments":[199],"featuring":[200],"predefined":[201],"values.":[203],"Finally,":[204],"perform":[206],"on":[209],"close-to-real-scale":[211],"convolutional":[212],"DNN,":[213],"which":[214],"reveals":[215],"new":[216],"features":[217],"dynamics.":[221]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4376653428","counts_by_year":[],"updated_date":"2025-01-04T16:46:54.809253","created_date":"2023-05-17"}