{"id":"https://openalex.org/W4376653360","doi":"https://doi.org/10.48550/arxiv.2305.07988","title":"Reconstruct Before Summarize: An Efficient Two-Step Framework for Condensing and Summarizing Meeting Transcripts","display_name":"Reconstruct Before Summarize: An Efficient Two-Step Framework for Condensing and Summarizing Meeting Transcripts","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4376653360","doi":"https://doi.org/10.48550/arxiv.2305.07988"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.07988","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.07988","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110917955","display_name":"Haochen Tan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tan, Haochen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034126390","display_name":"Han Wu","orcid":"https://orcid.org/0000-0002-8008-064X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Han","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078512276","display_name":"Wei Shao","orcid":"https://orcid.org/0000-0001-7531-1055"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shao, Wei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101617928","display_name":"Xinyun Zhang","orcid":"https://orcid.org/0009-0005-1464-9083"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Xinyun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072763304","display_name":"Mingjie Zhan","orcid":"https://orcid.org/0000-0001-8221-9089"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhan, Mingjie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100513891","display_name":"Zhaohui Hou","orcid":"https://orcid.org/0000-0001-5769-0311"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hou, Zhaohui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100456723","display_name":"Liang Ding","orcid":"https://orcid.org/0000-0001-8976-2084"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liang, Ding","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5035185924","display_name":"Linqi Song","orcid":"https://orcid.org/0000-0003-2756-4984"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Song, Linqi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C170858558","wikidata":"https://www.wikidata.org/wiki/Q1394144","display_name":"Automatic summarization","level":2,"score":0.98612654},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83470684},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.53423715},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.45349348},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44721037},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41623923},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3890219},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.06772232}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.07988","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.07988","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.07988","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.51,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389760904","https://openalex.org/W4323520239","https://openalex.org/W4306886878","https://openalex.org/W4242223894","https://openalex.org/W3148229873","https://openalex.org/W2366403280","https://openalex.org/W2150160875","https://openalex.org/W2091301346","https://openalex.org/W1517524280","https://openalex.org/W1495108544"],"abstract_inverted_index":{"Meetings":[0],"typically":[1],"involve":[2],"multiple":[3],"participants":[4],"and":[5,11,29,82,95,103,111],"lengthy":[6],"conversations,":[7],"resulting":[8],"in":[9],"redundant":[10],"trivial":[12],"content.":[13],"To":[14],"overcome":[15],"these":[16],"challenges,":[17],"we":[18,49],"propose":[19,50],"a":[20,36,51],"two-step":[21],"framework,":[22],"Reconstruct":[23],"before":[24],"Summarize":[25],"(RbS),":[26],"for":[27],"effective":[28],"efficient":[30],"meeting":[31,46,107],"summarization.":[32],"RbS":[33],"first":[34],"leverages":[35],"self-supervised":[37],"paradigm":[38],"to":[39,57,62,79,87],"annotate":[40],"essential":[41],"contents":[42],"by":[43],"reconstructing":[44],"the":[45,64,67,76,93],"transcripts.":[47],"Secondly,":[48],"relative":[52],"positional":[53],"bucketing":[54],"(RPB)":[55],"algorithm":[56],"equip":[58],"(conventional)":[59],"summarization":[60,89,108],"models":[61],"generate":[63],"summary.":[65],"Despite":[66],"additional":[68],"reconstruction":[69],"process,":[70],"our":[71,98,113],"proposed":[72],"RPB":[73],"significantly":[74],"compressed":[75],"input,":[77],"leading":[78],"faster":[80],"processing":[81],"reduced":[83],"memory":[84],"consumption":[85],"compared":[86],"traditional":[88],"methods.":[90],"We":[91],"validate":[92],"effectiveness":[94],"efficiency":[96],"of":[97],"method":[99],"through":[100],"extensive":[101],"evaluations":[102],"analysis.":[104],"On":[105],"two":[106],"datasets,":[109],"AMI":[110],"ICSI,":[112],"approach":[114],"outperforms":[115],"previous":[116],"state-of-the-art":[117],"approaches":[118],"without":[119],"relying":[120],"on":[121],"large-scale":[122],"pre-training":[123],"or":[124],"expert-grade":[125],"annotating":[126],"tools.":[127]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4376653360","counts_by_year":[],"updated_date":"2025-04-14T09:48:33.143778","created_date":"2023-05-17"}