{"id":"https://openalex.org/W4376632628","doi":"https://doi.org/10.48550/arxiv.2305.07308","title":"Efficient Search of Comprehensively Robust Neural Architectures via Multi-fidelity Evaluation","display_name":"Efficient Search of Comprehensively Robust Neural Architectures via Multi-fidelity Evaluation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4376632628","doi":"https://doi.org/10.48550/arxiv.2305.07308"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.07308","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"public-domain","license_id":"https://openalex.org/licenses/public-domain","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.07308","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100978585","display_name":"Jialiang Sun","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Jialiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102922572","display_name":"Wen Yao","orcid":"https://orcid.org/0000-0002-8590-4302"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yao, Wen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044302551","display_name":"Tingsong Jiang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Tingsong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100712764","display_name":"Xiaoqian Chen","orcid":"https://orcid.org/0000-0001-6564-186X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Xiaoqian","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9763,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.85041916},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.47565788},{"id":"https://openalex.org/keywords/high-fidelity","display_name":"High fidelity","score":0.44450283}],"concepts":[{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.85041916},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77685016},{"id":"https://openalex.org/C2776459999","wikidata":"https://www.wikidata.org/wiki/Q2119376","display_name":"Fidelity","level":2,"score":0.7693943},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5420912},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53063107},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4856633},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.47565788},{"id":"https://openalex.org/C113364801","wikidata":"https://www.wikidata.org/wiki/Q26674","display_name":"High fidelity","level":2,"score":0.44450283},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.41031063},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.06757155},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.07308","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"public-domain","license_id":"https://openalex.org/licenses/public-domain","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.07308","pdf_url":"http://arxiv.org/pdf/2305.07308","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.07308","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.07308","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"public-domain","license_id":"https://openalex.org/licenses/public-domain","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.52,"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4383221314","https://openalex.org/W4313346231","https://openalex.org/W4285785480","https://openalex.org/W3203790781","https://openalex.org/W3093978547","https://openalex.org/W3080754722","https://openalex.org/W2997056298","https://openalex.org/W2953536436","https://openalex.org/W2950183588","https://openalex.org/W2738001131"],"abstract_inverted_index":{"Neural":[0],"architecture":[1],"search":[2,87,100,163],"(NAS)":[3],"has":[4],"emerged":[5],"as":[6],"one":[7],"successful":[8],"technique":[9],"to":[10,33,48,73,159,181],"find":[11,74],"robust":[12,56,76,90,103],"deep":[13],"neural":[14,91],"network":[15],"(DNN)":[16],"architectures.":[17,57,77],"However,":[18],"most":[19],"existing":[20],"robustness":[21,36,66,134],"evaluations":[22,109,135,144],"in":[23,53],"NAS":[24,54,113],"only":[25],"consider":[26,49],"$l_{\\infty}$":[27],"norm-based":[28],"adversarial":[29,121,125],"noises.":[30],"In":[31,127],"order":[32],"improve":[34],"the":[35,60,111,131,137,147,162,166,169,175,183,192],"of":[37,43,63,65,88,108,133,168,194],"DNN":[38],"models":[39],"against":[40],"multiple":[41,106],"types":[42,64,107],"noises,":[44],"it":[45,68],"is":[46,179],"necessary":[47],"a":[50,84,153],"comprehensive":[51],"evaluation":[52,95,148],"for":[55,101],"But":[58],"with":[59],"increasing":[61],"number":[62,132],"evaluations,":[67],"also":[69],"becomes":[70],"more":[71],"time-consuming":[72],"comprehensively":[75,89,102],"To":[78],"alleviate":[79],"this":[80],"problem,":[81],"we":[82,98,129,151],"propose":[83,152],"novel":[85],"efficient":[86],"architectures":[92,104],"via":[93],"multi-fidelity":[94,154],"(ES-CRNA-ME).":[96],"Specifically,":[97],"first":[99],"under":[105],"using":[110],"weight-sharing-based":[112],"method,":[114],"including":[115],"different":[116],"$l_{p}$":[117],"norm":[118],"attacks,":[119,122],"semantic":[120],"and":[123,145,188],"composite":[124],"attacks.":[126],"addition,":[128],"reduce":[130],"by":[136,172],"correlation":[138],"analysis,":[139],"which":[140],"can":[141],"incorporate":[142],"similar":[143],"decrease":[146,161],"cost.":[149,164],"Finally,":[150],"online":[155,176],"surrogate":[156,170],"during":[157],"optimization":[158],"further":[160],"On":[165],"basis":[167],"constructed":[171],"low-fidelity":[173],"data,":[174],"high-fidelity":[177],"data":[178],"utilized":[180],"finetune":[182],"surrogate.":[184],"Experiments":[185],"on":[186],"CIFAR10":[187],"CIFAR100":[189],"datasets":[190],"show":[191],"effectiveness":[193],"our":[195],"proposed":[196],"method.":[197]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4376632628","counts_by_year":[],"updated_date":"2025-01-04T17:33:15.111009","created_date":"2023-05-17"}