{"id":"https://openalex.org/W4376167086","doi":"https://doi.org/10.48550/arxiv.2305.05900","title":"DPMLBench: Holistic Evaluation of Differentially Private Machine Learning","display_name":"DPMLBench: Holistic Evaluation of Differentially Private Machine Learning","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4376167086","doi":"https://doi.org/10.48550/arxiv.2305.05900"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.05900","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.05900","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006624972","display_name":"Chengkun Wei","orcid":"https://orcid.org/0000-0001-8849-8808"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wei, Chengkun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101297972","display_name":"Minghu Zhao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Minghu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100746182","display_name":"Zhikun Zhang","orcid":"https://orcid.org/0000-0001-7208-3392"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Zhikun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100337209","display_name":"Min Chen","orcid":"https://orcid.org/0000-0002-0960-4447"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Min","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051774674","display_name":"Wenlong Meng","orcid":"https://orcid.org/0000-0002-1032-3618"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Meng, Wenlong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5115587783","display_name":"\u0411\u043e \u041b\u044e","orcid":"https://orcid.org/0009-0005-6182-8172"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Bo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101202132","display_name":"Yuan Fan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fan, Yuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101562847","display_name":"Wenzhi Chen","orcid":"https://orcid.org/0000-0003-1674-4701"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Wenzhi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9842,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/differential-privacy","display_name":"Differential Privacy","score":0.6019316}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7716362},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.74687064},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.665264},{"id":"https://openalex.org/C23130292","wikidata":"https://www.wikidata.org/wiki/Q5275358","display_name":"Differential privacy","level":2,"score":0.6019316},{"id":"https://openalex.org/C27158222","wikidata":"https://www.wikidata.org/wiki/Q5532422","display_name":"Generalizability theory","level":2,"score":0.49600205},{"id":"https://openalex.org/C101468663","wikidata":"https://www.wikidata.org/wiki/Q1620158","display_name":"Modular design","level":2,"score":0.48793432},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.4565257},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.38146594},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37242585},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.05900","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.05900","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.05900","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Responsible consumption and production","id":"https://metadata.un.org/sdg/12","score":0.52}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4225593417","https://openalex.org/W410723623","https://openalex.org/W3206966921","https://openalex.org/W3160494304","https://openalex.org/W3022298670","https://openalex.org/W2573498121","https://openalex.org/W2413243053","https://openalex.org/W2118717649","https://openalex.org/W2035068594","https://openalex.org/W2015341305"],"abstract_inverted_index":{"Differential":[0],"privacy":[1,9,17,169],"(DP),":[2],"as":[3,191,254],"a":[4,13,41,86,110,134,238,255],"rigorous":[5],"mathematical":[6],"definition":[7],"quantifying":[8],"leakage,":[10],"has":[11],"become":[12],"well-accepted":[14],"standard":[15],"for":[16,258],"protection.":[18],"Combined":[19],"with":[20],"powerful":[21],"machine":[22,27,143],"learning":[23,28,144],"techniques,":[24],"differentially":[25],"private":[26],"(DPML)":[29],"is":[30,85],"increasingly":[31],"important.":[32],"As":[33],"the":[34,75,142,159,174],"most":[35],"classic":[36],"DPML":[37,96,115,161,250],"algorithm,":[38],"DP-SGD":[39,61],"incurs":[40],"significant":[42],"loss":[43,226],"of":[44,77,88,113,136,158],"utility,":[45,99],"which":[46,243],"hinders":[47],"DPML's":[48],"deployment":[49],"in":[50,80,94,141,173,199],"practice.":[51],"Many":[52],"studies":[53,68],"have":[54],"recently":[55],"proposed":[56,79],"improved":[57,114,160],"algorithms":[58,97,116,172,222,251],"based":[59],"on":[60,117,127,148],"to":[62,91,177,230,248],"mitigate":[63],"utility":[64,118,210,225],"loss.":[65],"However,":[66],"these":[67,95],"are":[69,139,228],"isolated":[70],"and":[71,102,119,187,211,252,260],"cannot":[72],"comprehensively":[73],"measure":[74],"performance":[76],"improvements":[78,93,138,205],"algorithms.":[81,162],"More":[82],"importantly,":[83],"there":[84],"lack":[87],"comprehensive":[89],"research":[90],"compare":[92],"across":[98],"defensive":[100],"capabilities,":[101],"generalizability.":[103],"We":[104,131,163,201],"fill":[105],"this":[106],"gap":[107],"by":[108],"performing":[109],"holistic":[111],"measurement":[112,156],"defense":[120],"capability":[121],"against":[122,185,213],"membership":[123],"inference":[124],"attacks":[125],"(MIAs)":[126],"image":[128],"classification":[129],"tasks.":[130],"first":[132],"present":[133],"taxonomy":[135],"where":[137],"located":[140],"life":[145],"cycle.":[146],"Based":[147],"our":[149,178,234],"taxonomy,":[150],"we":[151,236],"jointly":[152],"perform":[153],"an":[154,196],"extensive":[155],"study":[157],"also":[164,202],"cover":[165],"state-of-the-art":[166],"label":[167],"differential":[168],"(Label":[170],"DP)":[171],"evaluation.":[175],"According":[176],"empirical":[179],"results,":[180],"DP":[181,221],"can":[182,207],"effectively":[183],"defend":[184,212],"MIAs,":[186],"sensitivity-bounding":[188],"techniques":[189],"such":[190],"per-sample":[192],"gradient":[193],"clipping":[194],"play":[195],"important":[197],"role":[198],"defense.":[200],"explore":[203],"some":[204],"that":[206,219],"maintain":[208],"model":[209],"MIAs":[214],"more":[215],"effectively.":[216],"Experiments":[217],"show":[218],"Label":[220],"achieve":[223],"less":[224],"but":[227],"fragile":[229],"MIAs.":[231],"To":[232],"support":[233],"evaluation,":[235],"implement":[237],"modular":[239],"re-usable":[240],"software,":[241],"DPMLBench,":[242],"enables":[244],"sensitive":[245],"data":[246],"owners":[247],"deploy":[249],"serves":[253],"benchmark":[256],"tool":[257],"researchers":[259],"practitioners.":[261]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4376167086","counts_by_year":[],"updated_date":"2025-01-21T01:00:56.477456","created_date":"2023-05-12"}