{"id":"https://openalex.org/W4376166922","doi":"https://doi.org/10.48550/arxiv.2305.05792","title":"Testing for Overfitting","display_name":"Testing for Overfitting","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4376166922","doi":"https://doi.org/10.48550/arxiv.2305.05792"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.05792","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.05792","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5079416459","display_name":"James Schmidt","orcid":null},"institutions":[],"countries":[],"is_corresponding":true,"raw_author_name":"Schmidt, James","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":["https://openalex.org/A5079416459"],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.91949,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":84,"max":87},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9826,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9826,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9821,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.9967816},{"id":"https://openalex.org/keywords/fraction","display_name":"Fraction (chemistry)","score":0.52741396},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.41177553}],"concepts":[{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.9967816},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.7271136},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67400163},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.6165542},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.59309494},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5888912},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.57183874},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56666285},{"id":"https://openalex.org/C169903167","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Test set","level":2,"score":0.54921967},{"id":"https://openalex.org/C149629883","wikidata":"https://www.wikidata.org/wiki/Q660926","display_name":"Fraction (chemistry)","level":2,"score":0.52741396},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.41177553},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24000177},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.17983472},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.05792","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.05792","pdf_url":"http://arxiv.org/pdf/2305.05792","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.05792","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.05792","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388103534","https://openalex.org/W4318142952","https://openalex.org/W4312531262","https://openalex.org/W4288419306","https://openalex.org/W3208882810","https://openalex.org/W3099765033","https://openalex.org/W2987302549","https://openalex.org/W2972862903","https://openalex.org/W2970699417","https://openalex.org/W2921259037"],"abstract_inverted_index":{"High":[0],"complexity":[1],"models":[2,14],"are":[3],"notorious":[4],"in":[5,12,54,188],"machine":[6],"learning":[7,183],"for":[8,30,61,84,96,162],"overfitting,":[9,164],"a":[10,37,56,97,166],"phenomenon":[11],"which":[13,103,125,150,171,184],"well":[15],"represent":[16],"data":[17,24],"but":[18,59],"fail":[19],"to":[20,48,92,138,170],"generalize":[21],"an":[22,179],"underlying":[23],"generating":[25],"process.":[26],"A":[27],"typical":[28],"procedure":[29],"circumventing":[31],"overfitting":[32,71,114],"computes":[33],"empirical":[34,128],"risk":[35],"on":[36,121],"holdout":[38],"set":[39],"and":[40,73,78,94,113,117,177],"halts":[41],"once":[42],"(or":[43],"flags":[44],"that/when)":[45],"it":[46,63],"begins":[47],"increase.":[49],"Such":[50],"practice":[51],"often":[52],"helps":[53],"outputting":[55],"well-generalizing":[57],"model,":[58],"justification":[60],"why":[62,75],"works":[64],"is":[65,153],"primarily":[66],"heuristic.":[67],"We":[68,89,119,146],"discuss":[69],"the":[70,157,189],"problem":[72],"explain":[74],"standard":[76],"asymptotic":[77],"concentration":[79,123],"results":[80],"do":[81],"not":[82],"hold":[83],"evaluation":[85],"with":[86,131],"training":[87,111],"data.":[88],"then":[90],"proceed":[91],"introduce":[93],"argue":[95],"hypothesis":[98],"test":[99,152,158],"by":[100],"means":[101,129],"of":[102,182,191],"both":[104],"model":[105],"performance":[106],"may":[107,159,174],"be":[108,160,175],"evaluated":[109],"using":[110],"data,":[112],"quantitatively":[115],"defined":[116],"detected.":[118],"rely":[120],"said":[122],"bounds":[124],"guarantee":[126],"that":[127,140],"should,":[130],"high":[132],"probability,":[133],"approximate":[134,143],"their":[135],"true":[136],"mean":[137],"conclude":[139],"they":[141],"should":[142],"each":[144],"other.":[145],"stipulate":[147],"conditions":[148],"under":[149],"this":[151],"valid,":[154],"describe":[155],"how":[156],"used":[161],"identifying":[163],"articulate":[165],"further":[167],"nuance":[168],"according":[169],"distributional":[172],"shift":[173],"flagged,":[176],"highlight":[178],"alternative":[180],"notion":[181],"usefully":[185],"captures":[186],"generalization":[187],"absence":[190],"uniform":[192],"PAC":[193],"guarantees.":[194]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4376166922","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-22T17:56:20.146680","created_date":"2023-05-12"}