{"id":"https://openalex.org/W4376865089","doi":"https://doi.org/10.48550/arxiv.2305.03383","title":"WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval","display_name":"WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4376865089","doi":"https://doi.org/10.48550/arxiv.2305.03383"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.03383","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.03383","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5012817544","display_name":"Zahra Tabatabaei","orcid":"https://orcid.org/0009-0006-7536-3772"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tabatabaei, Zahra","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040080768","display_name":"Yuandou Wang","orcid":"https://orcid.org/0000-0003-4694-9572"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yuandou","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019517367","display_name":"Adri\u00e1n Colomer","orcid":"https://orcid.org/0000-0002-7616-6029"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Colomer, Adri\u00e1n","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081666472","display_name":"Javier Oliver Moll","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Moll, Javier Oliver","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068341719","display_name":"Zhiming Zhao","orcid":"https://orcid.org/0000-0002-6717-9418"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Zhiming","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5043316752","display_name":"Valery Naranjo","orcid":"https://orcid.org/0000-0002-0181-3412"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Naranjo, Valery","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9771,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9684,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.55908644},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.5029568}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7638767},{"id":"https://openalex.org/C4144372","wikidata":"https://www.wikidata.org/wiki/Q675287","display_name":"Magnification","level":2,"score":0.63779426},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.6276874},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.55908644},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.5029568},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.4847607},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.48113766},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.45958486},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.42987365},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38791087},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.30036408},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.077195495},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.03383","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.03383","pdf_url":"http://arxiv.org/pdf/2305.03383","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.03383","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.03383","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.5,"id":"https://metadata.un.org/sdg/17","display_name":"Partnerships for the goals"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4394050964","https://openalex.org/W4381430104","https://openalex.org/W4256609757","https://openalex.org/W4226059458","https://openalex.org/W2995102745","https://openalex.org/W2914559142","https://openalex.org/W2786391746","https://openalex.org/W2551249631","https://openalex.org/W2152595177","https://openalex.org/W1990237101"],"abstract_inverted_index":{"The":[0,90,115,153],"paper":[1],"proposes":[2],"a":[3,22,62,111,178],"Federated":[4,13],"Content-Based":[5],"Medical":[6],"Image":[7],"Retrieval":[8],"(FedCBMIR)":[9],"platform":[10],"that":[11,77,156,213],"utilizes":[12],"Learning":[14],"(FL)":[15],"to":[16,52,69,71,109,121,167,248],"address":[17],"the":[18,119,128,157,161,174,242],"challenges":[19],"of":[20,64,164,181],"acquiring":[21],"diverse":[23],"medical":[24,43,97],"data":[25,94,98,113,129],"set":[26],"for":[27,124,221,236],"training":[28,125,134,207],"CBMIR":[29,31,58],"models.":[30],"assists":[32],"pathologists":[33,223],"in":[34,48,59,87,96,132,142,173,187,203,241,252],"diagnosing":[35],"breast":[36,253],"cancer":[37,54,254],"more":[38],"rapidly":[39],"by":[40,260],"identifying":[41],"similar":[42,231],"images":[44,232],"and":[45,103,150,171,184,219,224],"relevant":[46],"patches":[47],"prior":[49],"cases":[50],"compared":[51],"traditional":[53],"detection":[55],"methods.":[56],"However,":[57],"histopathology":[60],"necessitates":[61],"pool":[63],"Whole":[65],"Slide":[66],"Images":[67],"(WSIs)":[68],"train":[70],"extract":[72],"an":[73],"optimal":[74],"embedding":[75],"vector":[76],"leverages":[78],"search":[79],"engine":[80],"performance,":[81],"which":[82],"may":[83],"not":[84],"be":[85],"available":[86],"all":[88],"centers.":[89],"strict":[91],"regulations":[92],"surrounding":[93],"sharing":[95,127],"sets":[99],"also":[100,197],"hinder":[101],"research":[102],"model":[104,120,180],"development,":[105],"making":[106],"it":[107],"difficult":[108],"collect":[110],"rich":[112],"set.":[114],"proposed":[116],"FedCBMIR":[117,139,158,196,215,229,244],"distributes":[118],"collaborative":[122],"centers":[123,265],"without":[126],"set,":[130],"resulting":[131],"shorter":[133],"times":[135],"than":[136,192,209],"local":[137,194,210],"training.":[138,195],"was":[140],"evaluated":[141],"two":[143],"experiments":[144],"with":[145,177,201,233,245,266],"three":[146],"scenarios":[147],"on":[148],"BreaKHis":[149,175,262],"Camelyon17":[151],"(CAM17).":[152],"study":[154],"shows":[155],"method":[159],"increases":[160],"F1-Score":[162],"(F1S)":[163],"each":[165],"client":[166],"98%,":[168],"96%,":[169],"94%,":[170],"97%":[172],"experiment":[176],"generalized":[179],"four":[182,264],"magnifications":[183],"does":[185],"so":[186],"6.30":[188],"hours":[189,205],"less":[190,206],"time":[191,208],"total":[193],"achieves":[198],"98%":[199],"accuracy":[200],"CAM17":[202],"2.49":[204],"training,":[211],"demonstrating":[212],"our":[214,228],"is":[216],"both":[217,222],"fast":[218],"accurate":[220],"engineers.":[225],"In":[226],"addition,":[227],"provides":[230],"higher":[234],"magnification":[235],"non-developed":[237],"countries":[238,247],"where":[239],"participate":[240],"worldwide":[243],"developed":[246],"facilitate":[249],"mitosis":[250],"measuring":[251],"diagnosis.":[255],"We":[256],"evaluate":[257],"this":[258],"scenario":[259],"scattering":[261],"into":[263],"different":[267],"magnifications.":[268]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4376865089","counts_by_year":[],"updated_date":"2025-02-21T15:46:48.008746","created_date":"2023-05-18"}