{"id":"https://openalex.org/W4375870326","doi":"https://doi.org/10.48550/arxiv.2305.03112","title":"Mitigating Undisciplined Over-Smoothing in Transformer for Weakly Supervised Semantic Segmentation","display_name":"Mitigating Undisciplined Over-Smoothing in Transformer for Weakly Supervised Semantic Segmentation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4375870326","doi":"https://doi.org/10.48550/arxiv.2305.03112"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.03112","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.03112","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101532408","display_name":"Jingxuan He","orcid":"https://orcid.org/0009-0003-9858-5640"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Jingxuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060524512","display_name":"Lechao Cheng","orcid":"https://orcid.org/0000-0002-7546-9052"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cheng, Lechao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003019748","display_name":"Chaowei Fang","orcid":"https://orcid.org/0000-0001-8805-9792"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fang, Chaowei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101954574","display_name":"Dingwen Zhang","orcid":"https://orcid.org/0000-0001-8369-8886"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Dingwen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067804148","display_name":"Zhangye Wang","orcid":"https://orcid.org/0000-0002-3553-0867"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Zhangye","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5089249170","display_name":"Wei Chen","orcid":"https://orcid.org/0009-0009-0262-5964"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Wei","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.999887,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":90},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/smoothing","display_name":"Smoothing","score":0.7929178},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.41522858}],"concepts":[{"id":"https://openalex.org/C3770464","wikidata":"https://www.wikidata.org/wiki/Q775963","display_name":"Smoothing","level":2,"score":0.7929178},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.69985574},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63868916},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.54120994},{"id":"https://openalex.org/C12713177","wikidata":"https://www.wikidata.org/wiki/Q1900281","display_name":"Perspective (graphical)","level":2,"score":0.49873614},{"id":"https://openalex.org/C511192102","wikidata":"https://www.wikidata.org/wiki/Q5156948","display_name":"Comprehension","level":2,"score":0.47146848},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44205496},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.4306968},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.41522858},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3410375},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3365231},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.19477284},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.19030958},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.03112","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.03112","pdf_url":"http://arxiv.org/pdf/2305.03112","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.03112","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.03112","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4238188170","https://openalex.org/W3125766170","https://openalex.org/W2383807498","https://openalex.org/W2149980199","https://openalex.org/W2125114371","https://openalex.org/W2040641410","https://openalex.org/W2019977573","https://openalex.org/W1997992934","https://openalex.org/W1987225439","https://openalex.org/W1978572805"],"abstract_inverted_index":{"A":[0],"surge":[1],"of":[2,50,72,89,113,134,140,148,165],"interest":[3,135],"has":[4,76],"emerged":[5],"in":[6,16,38,93,217],"weakly":[7],"supervised":[8],"semantic":[9,225],"segmentation":[10,200],"due":[11],"to":[12,31,84,220,224],"its":[13],"remarkable":[14],"efficiency":[15],"recent":[17],"years.":[18],"Existing":[19],"approaches":[20,66],"based":[21],"on":[22,26,193,213],"transformers":[23],"mainly":[24],"focus":[25],"exploring":[27],"the":[28,48,64,105,132,138,141,149,163,169,172,194],"affinity":[29,52,151,185,215],"matrix":[30,216],"boost":[32],"CAMs":[33],"with":[34,183],"global":[35],"relationships.":[36],"While":[37],"this":[39,123,178],"work,":[40],"we":[41,99,125,154],"first":[42],"perform":[43],"a":[44,70,86,101,110,127],"scrupulous":[45],"examination":[46],"towards":[47],"impact":[49],"successive":[51,150],"matrices":[53],"and":[54,171],"discover":[55],"that":[56,79,104,130,161,199],"they":[57],"possess":[58],"an":[59,145,156],"inclination":[60],"toward":[61],"sparsification":[62],"as":[63],"network":[65],"convergence,":[67],"hence":[68],"disclosing":[69],"manifestation":[71],"over-smoothing.":[73],"Besides,":[74],"it":[75,222],"been":[77],"observed":[78],"enhanced":[80],"attention":[81,167,182],"maps":[82],"tend":[83],"evince":[85],"substantial":[87],"amount":[88],"extraneous":[90],"background":[91,116,174],"noise":[92],"deeper":[94],"layers.":[95],"Drawing":[96],"upon":[97],"this,":[98],"posit":[100],"daring":[102],"conjecture":[103],"undisciplined":[106],"over-smoothing":[107],"phenomenon":[108],"introduces":[109],"noteworthy":[111],"quantity":[112],"semantically":[114],"irrelevant":[115],"noise,":[117],"causing":[118],"performance":[119],"degradation.":[120],"To":[121],"alleviate":[122],"issue,":[124],"propose":[126],"novel":[128],"perspective":[129],"highlights":[131],"objects":[133],"by":[136,179],"investigating":[137],"regions":[139],"trait,":[142],"thereby":[143],"fostering":[144],"extensive":[146],"comprehension":[147],"matrix.":[152],"Consequently,":[153],"suggest":[155],"adaptive":[157],"re-activation":[158],"mechanism":[159],"(AReAM)":[160],"alleviates":[162],"issue":[164],"incomplete":[166],"within":[168],"object":[170],"unbounded":[173],"noise.":[175],"AReAM":[176],"accomplishes":[177],"supervising":[180],"high-level":[181],"shallow":[184],"matrices,":[186],"yielding":[187],"promising":[188],"results.":[189],"Exhaustive":[190],"experiments":[191],"conducted":[192],"commonly":[195],"used":[196],"dataset":[197],"manifest":[198],"results":[201],"can":[202],"be":[203],"greatly":[204],"improved":[205],"through":[206],"our":[207],"proposed":[208],"AReAM,":[209],"which":[210],"imposes":[211],"restrictions":[212],"each":[214],"deep":[218],"layers":[219],"make":[221],"attentive":[223],"regions.":[226]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4375870326","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-29T21:57:53.331479","created_date":"2023-05-10"}