{"id":"https://openalex.org/W4368755223","doi":"https://doi.org/10.48550/arxiv.2305.02022","title":"LearnDefend: Learning to Defend against Targeted Model-Poisoning Attacks on Federated Learning","display_name":"LearnDefend: Learning to Defend against Targeted Model-Poisoning Attacks on Federated Learning","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4368755223","doi":"https://doi.org/10.48550/arxiv.2305.02022"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.02022","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.02022","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009272947","display_name":"Kiran Purohit","orcid":"https://orcid.org/0000-0002-5512-3441"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Purohit, Kiran","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103201369","display_name":"Soumi Das","orcid":"https://orcid.org/0000-0002-6933-5744"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Das, Soumi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046910575","display_name":"Sourangshu Bhattacharya","orcid":"https://orcid.org/0000-0001-5220-1881"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bhattacharya, Sourangshu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5024215125","display_name":"Santu Rana","orcid":"https://orcid.org/0000-0003-2247-850X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rana, Santu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9795,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9795,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9452,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/federated-learning","display_name":"Federated Learning","score":0.5152936},{"id":"https://openalex.org/keywords/fraction","display_name":"Fraction (chemistry)","score":0.46271914}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7328277},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.6685612},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.60985684},{"id":"https://openalex.org/C2992525071","wikidata":"https://www.wikidata.org/wiki/Q50818671","display_name":"Federated learning","level":2,"score":0.5152936},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.46976778},{"id":"https://openalex.org/C149629883","wikidata":"https://www.wikidata.org/wiki/Q660926","display_name":"Fraction (chemistry)","level":2,"score":0.46271914},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.44409502},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.4334404},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41689587},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3437538},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.12100175},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.11898628},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.02022","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.02022","pdf_url":"http://arxiv.org/pdf/2305.02022","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.02022","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.02022","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4375867731","https://openalex.org/W4317941881","https://openalex.org/W4312762663","https://openalex.org/W4298221930","https://openalex.org/W4287823391","https://openalex.org/W3013363440","https://openalex.org/W2777914285","https://openalex.org/W178140751","https://openalex.org/W1191014223","https://openalex.org/W1137063513"],"abstract_inverted_index":{"Targeted":[0],"model":[1,114],"poisoning":[2],"attacks":[3,158],"pose":[4],"a":[5,21,45,52,74,89,110,143],"significant":[6],"threat":[7],"to":[8,31,43,119,172],"federated":[9,68],"learning":[10,69],"systems.":[11],"Recent":[12],"studies":[13],"show":[14,167],"that":[15,150,168],"edge-case":[16],"targeted":[17],"attacks,":[18,50],"which":[19,115],"target":[20],"small":[22,53],"fraction":[23],"of":[24,66,76,88,154,179],"the":[25,63,67,86,124,133,138,177,183],"input":[26],"space":[27],"are":[28],"nearly":[29],"impossible":[30],"counter":[32],"using":[33,51],"existing":[34,160],"fixed":[35,161],"defense":[36,54,57,97,125,162,184],"strategies.":[37],"In":[38],"this":[39],"paper,":[40],"we":[41],"strive":[42],"design":[44],"learned-defense":[46],"strategy":[47],"against":[48,156],"such":[49],"dataset.":[55,185],"The":[56,81,94],"dataset":[58,98,126],"can":[59,116],"be":[60,101,117],"collected":[61],"by":[62],"central":[64],"authority":[65],"task,":[70],"and":[71,78,137,174],"should":[72],"contain":[73],"mix":[75],"poisoned":[77,104,111,134],"clean":[79,128,180],"examples.":[80],"proposed":[82],"framework,":[83],"LearnDefend,":[84],"estimates":[85],"probability":[87],"client":[90,139],"update":[91],"being":[92],"malicious.":[93],"examples":[95,181],"in":[96,123,142,176,182],"need":[99],"not":[100],"pre-marked":[102],"as":[103,127],"or":[105,129],"clean.":[106],"We":[107,131,165],"also":[108,166],"learn":[109],"data":[112,135],"detector":[113,136],"used":[118],"mark":[120],"each":[121],"example":[122],"poisoned.":[130],"estimate":[132],"importance":[140],"models":[141],"coupled":[144],"optimization":[145],"approach.":[146],"Our":[147],"experiments":[148],"demonstrate":[149],"LearnDefend":[151,169],"is":[152,170],"capable":[153],"defending":[155],"state-of-the-art":[157],"where":[159],"strategies":[163],"fail.":[164],"robust":[171],"size":[173],"noise":[175],"marking":[178]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4368755223","counts_by_year":[],"updated_date":"2025-04-13T03:00:02.307695","created_date":"2023-05-05"}